VRS51L3174

Datasheet

RAMTRION

Rev 1.0

High-Performance 8051 MCU + 8KB FRAM

Overview

The VRS51L3174 is a high performance, 8051-based microcontroller
coupled with a fully integrated array of peripherals for addressing a
broad range of embedded design applications.

Based on a powerful 40-MIPS, single-cycle, 8051 microprocessor,
the VRS51L3174’s memory sub-system features 64KB of Flash
and 4352 bytes of SRAM and 8192 Bytes of nonvolatie FRAM
(ferroelectric random access memory) memory.

Support peripherals include a hardware based arithmetic unit capable
of performing complex mathematical operations, a JTAG interface for
Flash programming and non-intrusive in-circuit debugging/emulation,
an internal oscillator, and a watchdog timer.

Communication and control of external devices is facilitated via an
assortment of digital peripherals such as an enhanced, fully
configurable SPI bus, an I?’C interface, dual UARTs with dedicated
baud rate generators, three 16-bit timers, 8 PWM controllers each
with a 16-bit timer, and 2 pulse width counter modules.

The VRS51L3174 operates from 3.0 to 3.6 volts over the industrial
temperature range and is available in a QFP-44 package. The device
features an active-low reset and is pin-compatible with an industry
standard 8051 microcontroller footprint.

FIGURE 1: VRS51L3174 FUNCTIONAL DIAGRAM

VRS51L3174
Mult/Accu/Div 8051 Core JTAG
w/ 32-Bit Barrel Single Cycle w/On-Chip @
Shifter 40MHz Emulation
Ports (5), Flash
Il Vos o) 64K Bytes SPI -
External Data SRAM 2
@ Bus Controller 4352 Bytes re @
UARTSs
On-Board :
Oscillator FRAM Baud Rate @
8192 Bytes Generators (2)
Crystal
L . Interrupt
-
= O;smllator Controller
nputs
Dynarnic PWMs/
Control Timers (8)
Watch Dog Pulse Width
Timer Counters (2)
Power-On/ Timer Capture
> Reset Inputs (3) <:|

Feature Set

o 8051 High Performance Single Cycle Processor
(Operation up to 40 MIPS)

o 64KB Flash Program Memory
(In-System/In-Application Programmable)

o 4352 Bytes of SRAM (4KB + 256)
(Ext. 4KB can be used for program or data memory)

o 8192 Bytes of on-chip FRAM memory

o JTAG Interface for Flash Programming and Non-Intrusive
Debugging/In-Circuit Emulation

o MULT/DIV/ACCU Unit including Barrel Shifter

o 40 General Purpose I/0Os

o 2 Serial UARTs/2 Baud Rate Generators (20-bit resolution)

o Enhanced SPI Interface (fully configurable word size)

o Fully Configurable I°C Interface (Master/Slave)

o 16 External Interrupt Pins/Interrupt On Port Pin Change

o 16-bit General Purpose Timer/Counters

o 2 Pulse Width Counter Modules

o 8 PWM Controller Outputs with Individual Timers

o PWMs can be used as General Purpose Timers

o Internal Oscillator

o Dynamic System Clock Frequency Adjustment

o Power Saving Features

o Power-On Reset/Brown-Out Detect

o Watchdog Timer

o Operating voltage: 3.0V to 3.6V

o Operating Temperature -40°C to +85°C

FIGURE 2: VRS51L3174 QFP-44

5
o
Iy
E=gx
20 z
dRENS
cE-TRERS
Hhoe-odd o-a®
NAETNA OO0AQ0
WOFOOE I3
THLmoYvao-dd
- --+Y00SO0O0
aoiooa>aaaa
OO0
44 43 42 41 40 39 38 37 36 35 34
SDO-P1.5 []10 331 P0.4-AD4
SCK-SCL*-PC1.3-P1.6 [|2 32] P0.5-AD5
SDI-SDA*-P1.7 (|3 311 P0.6-AD6
RESET [|4 30] P0.7-AD7
RXD0-PC0.1-P3.0 |5 \VRS51L3174 2¢[P4.3-TDI
TOOUT-P4.5 (6 28[] P4.2-TDO
TXDO-P3.1 7 QFP-44 2771 CMO-ALE
INTO-PCO0.0-P3.2 (|8 26] P4.1-TMS
INT1-PC1.0-P3.3 [|o 25] P2.7-DBCS3-A15-PWM7-TCK
TOIN-SCL-EXBRO-PC0.3-P3.4 [0 24[] P2.6-DBCS2-A14-PWM6-TOEX
T1IN-SDA-EXBR1-P3.5 []11 23] P2.5-DBCS1-A13-PWM5-T1EX
12 13 14 15 16 17 18 19 20 21 22
UoHooHoooy
OO~~~ O - NOT
cosTTOITANNNNN
g.0.06>00.00.00
xo <N oo~ o
£b2d 333558
x X ﬁ%g%%g * = Alternate
Loz 5 g
£
83
X =
==
o
1<)
la}
X
[

Ramtron International Corporation

1850 Ramtron Drive Colorado Springs

Colorado, USA, 80921

¢
¢
¢

http.//www.ramtron.com

mcuinfo@ramtron.com
1-800-545-FRAM, 1-719-481-7000

page 1 of 114

VRS51L3174

rRAM RSN

Pin Description

TABLE 1: VRS51L3174 PIN DESCRIPTIONS

QFP -

44 Name /0 Function

1 P1.5 /10 Port 1.5
SDO o SPI Data output
P1.6 /10 Port 1.6

P SCK) SPI Clock
SCL* 110 12C Clock (Alternate Pin)
PC1.3 | Pulse Counter PC1 input 3
P1.7 /10 Port P1.7

3 SDI | SPI Data Input
SDA* /10 I°C Data (Alternate Pin)

4 RESET /10 Reset
P3.0 1/10 Port 3.0

5 RXDO | UARTO RX pin
PCO0.1 | Pulse Counter PCO input 1

6 P4.5 /10 Port 4.5
TOOUT o Timer 0 output

7 P3.1 /10 Port 3.1
TXDO o UARTO TX pin
P3.2 1/10 Port 3.2

8 INTO | Interrupt 0 input
PC0.0
P3.3 110 Port 3.3

9 INT1 | Interrupt 1 input
PC1.0 Pulse Counter PC1 input 0
P3.4 1/10 Port 3.4
SCL /10 12C clock

10 TOIN | Timer 0 Input
PCO0.3 | Pulse Counter PCO input 3
EXBRO | UARTO External Baud Rate Input
P3.5 1/10 Port 3.5

” SDA 1/10 I2C Data
T1IN | Timer 1 Input
EXBR1 | UART1 External Baud Rate input
P3.6 [lle] Port 3.6

12 WR o Ext Data memory access write

signal (active low)

P3.7 /10 Port 3.7

13 RD o Ext Data memory access read signal

(active low)

14 XTAL1 [e] Crystal Oscillator (Output)
P4.6 1/10 Port 4.6

15 XTAL2 | Crystal Oscillator (Input)
P4.7 /10 Port 4.7

16 VSS GND Device ground

17 P4.0 /10 Port 4.0
T10UT Timer 1 Output
P2.0 1/10 Port 2.0

18 PWMO o PWMO Output
A8 o Ext. Address Bus A8
P2.1 /10 Port 2.1

19 PWM1 [0} PWM1 Output
A9 o Ext. Address Bus A9
P2.2 1/10 Port 2.2

20 PWM2 o PWM2 Output
A10 o Ext. Address Bus A10
P2.3 /10 Port 2.3

21 PWM3 [0} PWMS3 Output
TXD0* (0] UARTO TX pin (Alternate Pin)
A11 o Ext. Address Bus A11
P2.4 /10 Port 2.4
PWM4 [0} PWM4 Output

2 RXDO* | UARTO RX pin (Alternate Pin)
PCO0.2 | Pulse Counter PCO input 2
A12 o Ext. Address Bus A12
DBCS0 [0} Ext. Data Bus DSCS0
P2.5 /10 Port 2.5
PWM5 o PWMS5 output

23 T1EX | Timer 1 EX input
A13 o Ext. Address Bus A13
DBCS1 [0} Ext. Data Bus DSCS1

P2.6 1/10 Port 2.6
PWM6 0] PWMB6 output
24 TOEX | Timer 0 EX input
A14 O Ext. Address Bus A114
DBCS2 (0] Ext. Data Bus DSCS2
P2.7 1/10 Port 2.7
25 PWM7 [¢] PWM?7 output
TCK | JTAG TCK input
A15 O Ext. Address Bus A15
DBCS3 O Ext. Data Bus DSCS3
2 P4.1 1/10 Port 4.1
T™S | JTAG TMS Input
27 CMO | JTAG Program mode
ALE (0] Ext Address Latch Enable
28 P4.2 1/0 Port 4.2
TDO O JTAG TDO Line
29 P4.3 /0 Port 4.3
TDI | JTAG TDlI line
30 P0.7 1/10 Port 0.7
AD7 1/0 Ext. Address/Data Bus AD7
31 P0.6 1/0 Port 0.6
AD6 110 Ext. Address/Data Bus AD6
32 P0.5 /0 Port 0.5
AD5 1/0 Ext. Address/Data Bus AD5
33 P0.4 1/10 Port 0.4
AD4 1/0 Ext. Address/Data Bus AD4
34 P0.3 1/0 Port 0.3
AD3 110 Ext. Address/Data Bus AD3
35 P0.2 /0 Port 0.2
AD2 1/0 Ext. Address/Data Bus AD2
36 P0.1 1/10 Port 0.1
AD1 1/0 Ext. Address/Data Bus AD1
37 P0.0 1/0 Port 0.0
ADO 110 Ext. Address/Data Bus ADO
38 VDD Positive supply
39 P4.4 1/10 Port 4.4
T20UT Timer 2 Output
P1.0 1/0 Port 1.0
40 CS0 [e) SPI Chip Select 0
T2IN | Timer 2 input
P1.1 1/10 Port 1.1
41 Cs1 [e] SPI Chip Select 1
T2EX | Timer 2 EX input
P1.2 1/0 Port 1.2
CSs2 [¢] SPI Chip Select 2
42 RXD1 | UART1 RX line
PC1.1 | Pulse Counter PC1 input 1
T20UT [e] Timer 2 Output Pin (Alternate pin)
P1.3 1/10 Port 1.3
43 Cs3 0] SPI Chip Select 3
TXD1 o UART1 TX line
P1.4 1/10 Port 1.4
44 SS | SPI Slave Select input
T10UT* Timer 1 Output (Alternate pin)
E-3
31880 2393
tOf o NOT-a®
ia:andScRER
aooagonognn
SDO-P15 *45[7 P0.4-AD4
SCK-SCL*-PC1.3-P1.6 32[] P0.5-AD5

SDI-SDA*-P1.7

RESE
RXD0-PC0.1-P3.0
TOOUT-P4.5
TXDO-P3.1
INT0-PC0.0-P3.2
INT1-PC1.0-P3.3
TOIN-SCL-EXBR0-PC0.3-P3.4
T1IN-SDA-EXBR1-P3.5

WR-P3.6 (s~

31[] P0.6-AD6
30[] P0.7-AD7
29[] P4.3-TDI
28] P4.2-TDO
271 CMO-ALE
26[] P4.1-TMS

VRS51L3174
QFP-44

RD-P3.7]
XTAL1-P4.6 []
XTAL2-P4.7 []
T10UT-P4.

PWMO-A8-P2.

* = Alternate

PWM1-A9-P2.

25[] P2.7-DBCS3-A15-PWM7-TCK
24[] P2.6-DBCS2-A14-PWM6-TOEX
23] P2.5-DBCS1-A13-PWM5-T1EX

www.ramtron.com

page 2 of 114

VRS51L3174

rRAM RSN

Instruction Set T et
Mnemonic Description Size y Hex Code
(bytes) Cycles
The following table describes the instruction set of the [gosieannstruction
VRS51L3174. The instructions are binary code- | CLRC Clear Carry bit 1 1 C3h
. . . CLR bit Clear bit 2 4 C2h
compatible and perform the same functions as industry [—setsc Set Carry bitto 1 1 7 D3h
Standard 8051 S. SETB bit Set bit to 1 2 4 D2h
CPLC Complement Carry bit 1 1 B3h
TABLE 2: LEGEND FOR INSTRUCTION SET TABLE CPL bit Complement bit 2 4 B2h
ANL C,bit Logical AND between Carry and bit 2 4 82h
Symbol Function ANL C #bit Logical AND between Carry and not bit 2 4 BOh
A Accumulator ORL C,bit Logical ORL between Carry and bit 2 4 72h
Rn Register RO-R7 ORL C,#bit Logical ORL between Carry and not bit 2 4 AOh
Direct Internal register address MOV C,bit Copy bit value into Carry 2 4 A2h
@Ri Internal register pointed to by RO or R1 (except MOVX) MOV bit,C Copy Carry value into Bit 2 3 92h
rel Two's complement offset byte Data Transfer Instructions
bit Direct bit address MOV A, Rn Move register to A 1 2 E8h-EFh
#data 8-bit constant MOV A, direct Move direct byte to A 2 3 E5h
#data 16 16-bit constant MOV A, @Ri Move data memory to A 1 3 E6h-E7h
addr 16 16-bit destination address MOV A, #data Move immediate to A 2 2 74h
addr 11 11-bit destination address MOV Rn, A Move A to register 1 1 F8h-FFh
MOV Rn, direct Move direct byte to register 2 3 A8h-AFh
TaBLE 3: VRS51L.3174 INSTRUCTION SET MOV Rn, #data Move immediate to register 2 2 78h-7Fh
i Instr MOV direct, A Move A to direct byte 2 3 F5h
Mnemonic Description i‘}‘f Cycle.s Hex Code MOV direct, Rn Move register to direct byte 2 3 88h-8Fh
MOV direct, direct Move direct byte to direct byte 3 3 85h
Arithmetic instructions [MOV direct, @Ri Move data memory to direct byte 2 3 86h-87h
ADD A, Rn Add register to A 1 2 28h-2Fh MOV direct, #data Move immediate to direct byte 3 3 75h
ADD A, direct Add direct byte to A 2 3 25h MOV @Ri, A Move A to data memory 1 2 Féh-F7h
ADD A, @Ri Add data memory to A 1 3 26h-27h MOV @Ri, direct Move direct byte to data memory 2 3 A6h-A7h
ADD A, #data Add immediate to A 2 2 24h MOV @Ri, #data Move immediate to data memory 2 2 76h-77h
ADDC A, Rn Add register to A with carry 1 2 38h-3Fh MOV DPTR, #data Move immediate to data pointer 3 3 90h
ADDC A, direct 'Add direct byte to A with carry 2 3 35h MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3+1 93h
ADDC A, @Ri Add data memory to A with carry 1 3 36h-37h MOVC A, @A+PC | Move code byte relative PC to A 1 3+1 83h
ADDC A, #data Add immediate to A with carry 2 2 34h MOVX ; Move external data (A8) to A 1 3* E2h-E3h
SUBB A, Rn Subtract register from A with borrow 1 2 98h-9Fh A.{MPAGE, @Ri} m
SUBB A, direct Subtract direct byte from A with borrow 2 3 95h MOVX A, @DPTR Move external data (A16) to A 1 2 EOh
SUBB A, @Ri Subtract data mem from A with borrow | 1 3 96h-97h MOVX) Move A to external data (A8) 1 o F2h-F3h
SUBB A, #data Subtract immediate from A with borrow 2 2 94h &M:&Gé’[)@ﬁ_ﬁa}": Nove A to external data (A16) 7 T Fon
:ng Qn ::z:m::; l;gister :]] g 08?1‘—1th PUSH direct Push direct byte onto stack 2 3 COh
INC direct Increment direct byte 2 3 05h POP direct Pop direct byte from stack 2 2 DOh
INC @Ri Increment data memory 1 3 06h-07h XCHA, Rn Exchange A and register 1 3 C8h-CFh
DEC A Decrement A 1 > 1ah XCH A, dire.ct Exchange A and direct byte 2 4 C5h
DEC Rn Decrement register 1 2 18h-1Fh XCHA, @Ri Exc:ange ﬁ ang ga:a memory 1 4 C6h-C7h
DEC direct Decrement direct byte 2 3 15h XCHD A, @Ri | 0>;v°e f‘:ﬁ’;l o and data memory 1 4 D6h-D7h
DEC @Ri Decrement data memory 1 3 16h-17h Branching Instructions [
INC DPTR Incrgment data pointer 1 2 A3h ACALL addr 11 Absolute call to subroutine 2 4+1 11h-F1h
MUL AB Muitiply A by B ! 2 Adh LCALL addr 16 Long call to subroutine 3 5+1 12h
DIV AB D'V'[_je A by. B 1 2 84h RET Return from subroutine 1 3+1 22h
DA_ A _ Decimal adjust A 1 4 Déh RETI Return from interrupt 1 3+1 32h
Logical Instructions i | AJMP addr 11 Absolute jump unconditional 2 2+1 01h-E1h
ANL A, R." AND rgglster to A 1 2 58h-5Fh LJMP addr 16 Long jump unconditional 3 3+1 02h
ANL A, d're_Ct AND direct byte to A 2 3 55h SJMP rel Short jump (relative address) 2 3+1 80h
ANL A, @Ri AND data memory to A 1 3 56h-57h JC rel Jump on carry = 1 2 341 40h
ANL A, #data AND immediate to A 2 2 54h INC rel Jump on carry = 0 > 341 50h
ANL direct, A AND A to direct byte 2 3 52h JB bit, rel Jump on direct bit = 1 3 | 3/4+1 20h
ANL direct, #data AND immediate data to direct byte 3 3 53h JNB bit, rel Jump on direct bit = 0 3 374+ 30h
ORL A, R.n OR rggister oA 1 2 48h-4Fh JBC bit, rel Jump on direct bit = 1 and clear 3 3/4+1 10h
ORL A, direct OR direct byte to A 2 &l 45 JMP @A+DPTR Jump indirect relative DPTR 1 2+1 73h
ORL A, @Ri OR data memory to A 1 3 46h-47h JZ rel Jump on accumulator = 0 2 3+1 60h
ORL A_‘ #data OR |mmeg|ate oA 2 2 44h JNZ rel Jump on accumulator 1= 0 2 3+1 70h
ORL d!rect, A OR A to dlr‘ect byte . 2 3 42h CJNE A, direct, rel Compare A, direct JNE relative 3 4/5+1 B5h
ORL direct, #data OR |mmed|a(e da.ta o direct byte 3 3 43h CJNE A, #d, rel Compare A, immediate JNE relative 3 3/4+1 B4h
XRL A, R.n EXC'”S!VE'OR r‘?g'Ster oA 1 2 68h-6Fh CJNE Rn, #d, rel Compare reg, immediate JNE relative 3 3/4+1 B8h-BFh
XRL A, direct Exclusive-OR direct byte to A 2 3 65h CJNE @RI, #d, rel | _Compare ind, immediate JNE relative 3 | 4/5+1] B6h-B7h
XRL A, @Ri Exclus!ve-OR qata m.emory oA 1 3 66h-67h DJNZ Rn, rel Decrement register, JNZ relative 2 3/4+1 D8h-DFh
XRL A_’ #data Exclus!ve-OR |mme§late oA 2 2 64h DJNZ direct, rel Decrement direct byte, JNZ relative 3 3/4+1 D5
XRL direct, A Exclusive-OR A to direct byte 2 3 62h Mi llaneous Instruction
XRL direct, #data Exclusive-OR immediate to direct byte 3 3 63h NOP No operation 1 1 00h
CLRA Clear A 1 1 E4h NOP If PCON 4 is 0 (reset Value): NOP 1 1 ABh
CPLA Compliment A 1 1 F4h [T MSB (@RamPtr) ==
SWAP A Swap nibbles of A 1 1 C4h MOV @RamPtr,A Accumulator value is written 2 3 A5h
RL A Rotate A left 1 1 23h in SFR{1,@RamPtr[6:0]}
RLC A Rotate A left through carry 1 1 33h If MSB (@RamPtr) ==
RRA Rotate A right 1 1 03h MOV A,@RamPtr SFR{1,@RamPtr[6:0]} 3 4 A5h
RRC A Rotate A right through carry 1 1 13h is written in Accumulator
Rn Any of the regster RO 10 R7
@Ri: Indirect addressing using Register RO or R1

immediate Data provided with Instruction
Immediate data included with instruction

address at the bit level

rel relative address to Program counter from +127 to 128
Addr11: 11-bit address range

Addr16: 16-bit address range

#a: Immediate Data supplied with instruction

#data:
#datal6:
bit:

www.ramtron.com

page 3 of 114

VRS51L3174 rRAMTRSON

Special Function Registers (SFR)

Addresses 80h to FFh of the SFR address space can be accessed in direct addressing mode only. The following table
lists the VRS51L3174 special function registers. Due to the VRS51L3174’s high level of integration, the SFRs have
been mapped onto two pages.

The following tables summarize the SFR assignment. Complete functional descriptions of each register will be
provided throughout the datasheet.

11 SFR Map Page 0

TABLE 4: SPECIAL FUNCTION REGISTERS (SFR) PAGE 0

Resg'i:zer ::z Bit 7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit 0 szls;;
° - : - - - _ - -) T111b
SP 81h - - - - R _ R ; 00101010b
DPLO 82h - - - - R _ R ; 00000000b
DPHO 83h . - -) B i _ . 00000000b
DPL1 84h 00000000b
DPH1 85h 00000000b
DPS 86h DPSEL Oooooooob
PCON 87h | OSCSTOP | INTMODEN | DEVCFGEN | SFRINDADR GF1 GFO PDOWN IDLE 00010100b
INTEN1 88h T1IEN U1IEN UOIEN PCHGIENO TOIEN SPIRXOVIEN | SPITXEIEN . oooooooob
TOTICFG 89h - T1GATE TOGATE TICLKSRC | T1OUTEN TIMODES TOOUTEN TOMODES OOOOOOOOb
TLO 8Ah 00000000b
THO 8Bh 00000000b
TL1 8Ch 00000000b
TH1 8Dh 00000000b
TL2 8Eh 00000000b
TH2 8Fh 00000000b
il oon . .) . i - i - 11111111b
WDTCFG 91h | WDTPERIOD3 | WDTPERIOD2 | WDTPERIOD1 | WDTPERIODO WTIMERF ASTIMER WDTF WDTRESET oooooooob
RCAPOL 92h 00000000b
RCAPOH 93h 00000000b
RCAP1L 94h 00000000b
RCAP1H 95h 00000000b
RCAP2L 96h 00000000b
RCAP2H 97h 00000000b
Reserved 98h 11111111b
TOTICLKCFG | 9%h | TICLKCFG3 | T1CLKCFG2 | TI1CLKCFG1 | TI1CLKCFGO | TOCLKCFG3 | TOCLKCFG2 | TOCLKCFG1 | TOCLKCFGO oooooooob
TOCON 9Ah TOOVF TOEXF TODOWNEN | TOTOGOUT TOEXTEN TRO TOCOUNTEN | TORLCAP Oooooooob
T1CON 9Bh T1OVF TIEXF TIDOWNEN | T1TOGOUT T1EXTEN TR1 TICOUNTEN | TIRLCAP Oooooooob
T2CON och T20VF T2EXF T2DOWNEN | T2TOGOUT T2EXTEN TR2 T2COUNTEN | T2RLCAP oooooooob
T2CLKCFG 9Dh - - T2CLKSRC T20UTEN | T2CLKCFG3 | T2CLKCFG2 | T2CLKCFG1 | T2CLKCFGO oooooooob
PWCOCFG 9Eh PWCOIF PWCORST PWCOEND | PWCOSTART | PWCOENDSRC1 | PWCOENDSRCO | PWCOSTSRCY PWCOSTSRCO OOOOOOOOb
PWC1CFG 9Fh PWCIIF PWCIRST PWCIEND | PWCISTART | PWCIENDSRC1 | PWCIENDSRCO | PWCISTSRCH PWC1STSRCO oooooooob
P2 AOh - B R _ B - N - 11

www.ramtron.com

page 4 of 114

VRS51L3174

rRAM RSN

EERT)
UARTOINT Ath COLEN RXOVEN RXAVAILEN | TXEMPTYEN | COLENF RXOVF RXAVENF | TXEMPTYF o
UARTOCFG | A2h BRADJ3 BRADJ2 BRADJ1 BRADJO BRCLKSRC BIRXTX B9EN STOP2EN 0000
0000
UARTOBUF A3h -
0000
UARTOBRL Adh oo
0000
UARTOBRH | Ash o
UARTOEXT A6h | UOTIMERF | UOTIMEREN | UORXSTATE | MULTIPROC | J1708PRI3 | J1708PRI2 | J1708PRI J1708PRIO e
Reserved A7h
INTEN2 A8h | PCHGIENT | AUWDTIEN | PWMT47IEN | PWMTO3IEN PWCIEN [2CUARTCI I2CIEN T2IEN oooooooob
PWMCFG A%h : PWMWAIT | PWMCLRALL | PWMLSBMSB | PWMMIDEND | PWMCH2 PWMCH1 PWMCHO oo
PWMEN AAR | PWM7EN PWM6EN PWMSEN PWM4EN PWM3EN PWM2EN PWM1EN PWMOEN -
PWMLDPOL ABh PWM7LDPOL PWM6LDPOL PWMS5LDPOL PWM4LDPOL PWM3LDPOL PWM2LDPOL PWM1LDPOL PWMOLDPOL OOOOOOOOb
0000
PWMDATA ACh o
PWMTMREN ADh PWM7TMREN PWM6TMREN PWM5TMREN PWM4TMREN PWM3TMREN PWM2TMREN PWM1TMREN PWMOTMREN OOOOOOOOb
PWMTMRF AEh | PWM7TMRF | PWM6TMRF | PWMSTMRF | PWMATMRF | PWM3TMRF | PWM2TMRF | PWMITMRF | PWMOTMRF o
PWMCLKCFG AFh U4PWMCLK3 U4PWMCLK2 U4PWMCLK1 U4PWMCLKO L4PWMCLK3 L4PWMDCLK2 L4PWMCLK1 L4PWMCLKO Oooooooob
11
P3 BOh - - - - - - - - 1011b
UARTAINT B1h COLEN RXOVEN RXAVAILEN | TXEMPTYEN | COLENF RXOVF RXAVENF | TXEMPTYF o
UARTICFG | B2h BRADJ3 BRADJ2 BRADJ1 BRADJO BRCLKSRC BIRXTX B9EN STOP2EN 000
0000
UART1BUF B3h -
0000
UART1BRL B4h o
0000
UART1BRH BS5h o
UARTIEXT Béh | UITIMERF | UITIMEREN | U1RXSTATE | MULTIPROC | J1708PRI3 | J1708PRI2 | J1708PRI1 J1708PRIO e
Not used B7h
IPINFLAG1 B8h P37IF P36IF P35IF P34IF P31IF P30IF INT1IF INTOIF &ﬁ%L
PORTCHG B9h PMONFLAG1 PCHGMSK1 PCHGSEL1 PCHGSELO PMONFLAGO PCHGMSKO PCHGSEL1 PCHGSELO OOOOOOOOb
11
P4 Ccoh 1111b
SPICTRL Cih SPICLK2 SPICLK1 SPICLKO SPICS1 SPICSO SPICLKPH | SPICLKPOL | SPIMASTER o
SPICONFIG | C2h | SPIMANCS | SPIUNDERC | FSONCS3 | SPILOADCS3 | SPISLOW | SPIRXOVEN | SPIRXAVEN | SPITXEEN o
0000
SPISIZE C3h o111b
0000
SPIRXTX0 Céh -
0000
SPIRXTX1 C5h 0000b
0000
SPIRXTX2 céh o
0000
SPIRXTX3 C7h o
111
Reserved C8h 1111b
SPISTATUS | C9h | SPIREVERSE - SPIUNDERF | SSPINVAL SPINOCS | SPIRXOVF | SPIRXAVF | SPITXEMPF ﬁ%ﬁL
0000
PSW DOh cy AC Fo RS1 RSO ov F1 P o
I12CCONFIG D1h MASTRARB |12CRXOVEN 12CRXAVEN 12CTXEEN I2CMASTART 12CSCLLOW I2CRXSTOP 12CMODE 0000 0100b
12CTIMING D2h 0000 1100b
12CIDCFG D3h 12CID6 12CID5 12CID4 12CID3 12CID2 12CID1 12CIDO 12CADVCFG 0000 0000b
|12CSTATUS D4h I12CERROR I12CNOACK I12CSDASYNC I2CACKPH 12CIDLEF I12CRXOVF I12CRXAVF I2CTXEMPF 0010 1001b
I2CRXTX D5h 0000 0000b
IPININV1 D6h P3TIINV P36IINV P35IINV P34IINV P33IINV P32IINV INTAIINV INTOIINV o—

www.ramtron.com

page 5 of 114

VRS51L3174

rRAM RSN

IPININV2 D7h POTIINV POGIINY POSIINV PO4IINY PO3IINV PO2IINV POTIINV POOIINV oo
IPINFLAG2 Déh POTIF POBIF POSIF POAIF PO3IF PO2IF PO1IF POOIF o
XMEMCTRL D9h EXTBUSCFG EXTBUSCS - - STRECH3 STRECH2 STRECH1 STRECHO 0000 0000b
Reserved DAh R ; } } } ; } ; 0000 0000b
Reserved DBh - - - - - - - - 0000 0000b
FRAMCFG1 DCh FREADIDLE 0 FRAMCLK1 FRAMCLKO BURSTEN FRAMOP1 FRAMOPO RUNFRAMOP 1000 0000b
FRAMCFG2 DDH 0 0 0 0 FRAMBP1 FRAMBPO FRAMWEL 0 0000 0000b
Reserved DEh - - - - - - - - 0000 0000b
Reserved DFH } } } } } ; ; ; 0000 0000b
0000
ACC Eoh - - ; - - ; - ; o
DEVIOMAP E1h Reserved 0 I2CALTMAP 0 UOALTMAP T2ALTMAP T1ALTMAP TOALTMAP OOOOOOOOb
INTPRI1 E2h T1P37PRI U1P36PRI UOP35PRI PCOP34PRI TOP31PRI SRP30PRI STP33PRI INTOP32PRI OOOOOOOOb
INTPRI2 E3h PC1POOPRI AUPO6PRI PTHPO5PRI PTLPO4PRI PWCP23PRI 110P02PRI 12CPO1PRI T2POOPRI OOOOOOOOb
INTSRCA E4h | INTSRC1.7 | INTSRC1.6 | INTSRC1.5 | INTSRC14 | INTSRC1.3 | INTSRC12 | INTSRC1.1 INTSRCA.0 bbb
INTSRC2 Esh | INTSRC27 | INTSRC26 | INTSRC25 | INTSRC24 | INTSRC23 | INTSRC22 | INTSRC2.1 INTSRC2.0 o
IPINSENS1 E6h | P37ISENS | P36ISENS P35ISENS P34ISENS P33ISENS | P32ISENS | INTIISENS | INTOISENS -
IPINSENS2 E7h | PO7ISENS | POBISENS PO5ISENS PO4ISENS PO3ISENS | PO2ISENS PO1ISENS POOISENS oo
0000
GENINTEN Egh - - ; - - ; GENINTEN o
FPICONFIG | E9h | FPILOCK1 FPILOCKO FPIIDLE FPIRDY 0 FPISBIT FPITASK1 FPITASKO o
0000
FPIADDRL EAh oo
0000
FPIADDRH EBh o
0000
FPIDATAL ECh oooor
0000
FPIDATAH EDh o
FPICLKSPD EEh FPICLKSPD3 FPICLKSPD2 FPICLKSPD1 FPICLKSPDO OOOOOOOOb
0000
Reserved EFh - - - - - - - - 0000b
0000
B FOh 0000b
0000
MPAGE Fih -
DEVCLKCFG1 F2h SOFTRESET OSCSELECT CLKDIVEN FULLSPDINT CLKDIV3 CLKDIV2 CLKDIV1 CLKDIVO 0110 0000b
DEVCLKCGF2 F3h CYOSCEN INTOSCEN - - CYRANGE1 CYRANGEO 0 - 0100 1001b
PERIPHEN1 | F4h SPICSEN SPIEN I2CEN U1EN UOEN T2EN T1EN TOEN &i%t
PERIPHENZ2 F5h PWC1EN PWCOEN AUEN XRAM2CODE IOPORTEN WDTEN PWMSFREN FPIEN 10000000b
DEVMEMCFG | F6h | EXTBUSEN | FRAMEN ; - - ; - SFRPAGE -
PORTINEN F7h | Reserved (0) 1 1 P4INPUTEN | P3INPUTEN | P2INPUTEN | P1INPUTEN | POINPUTEN b
0000
USERFLAGS | Fgh o
POPINCFG F9h P0O7IN1OUTO PO6IN1OUTO PO5IN1OUTO P04IN1OUTO PO3IN1OUTO P02IN1OUTO PO1IN1OUTO POOIN1OUTO 11111111b
P1PINCFG FAh P17IN1OUTO P16IN1OUTO P15IN10OUTO P14IN1OUTO P13IN1OUTO P12IN1OUTO P11IN1OUTO P10IN1OUTO 11111111b
P2PINCFG FBh P27IN1OUTO P26IN1OUTO P25IN10OUTO P24IN1OUTO P23IN1OUTO P22IN1OUTO P21IN1OUTO P20IN1OUTO 11111111b
P3PINCFG FCh P37IN1OUTO P36IN1OUTO P35IN1OUTO P34IN1OUTO P33IN1OUTO P32IN1OUTO P31IN1OUTO P30IN1OUTO 11111111b
P4PINCFG FDh P47IN1OUTO P46IN1OUTO P45IN10OUTO P44IN1OUTO P43IN1OUTO P42IN1OUTO P41IN1OUTO P40IN1OUTO 11111111b
1111
Reserved FEh - - - - - - - - 1111b
1111
Reserved FFh B B B - - - - - 1111b

www.ramtron.com

page 6 of 114

VRS51L3174

rRAM RSN

1.2 SFR Map Page 1

TABLE 5: SPECIAL FUNCTION REGISTERS (SFR) PAGE 1

Res;‘ter 2:2 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 s:lsue;
PO 80h . - . i]] i] o
SsP 81h - -] R .] i) 0000
DPLO 82h . - . i]] i) 0000
DPHO 83h . -] . R])) 2000
DPL1 84h 0000
DPH1 85h 000
DPS 86h DPSEL 00000000b
PCON 87h | OSCSTOP | INTMODEN | DEVCFGEN | SFRINDADR GF1 GFO PDOWN IDLE oo
INTEN1 88h T1IEN U1IEN UOIEN PCHGIENO TOIEN SPIRXOVIEN | SPITXEIEN ; OOOOOOOOb
TOT1CFG 8%h ; T1GATE TOGATE TICLKSRC | TIOUTEN | TIMODES TOOUTEN TOMODES o
TLO 8AN 0000
THO 8Bh 2000
TL1 8Ch 0000
TH1 8Dh 000
TL2 8Eh 2000
TH2 8Fh 0000
P1 90h . - . i]] i] o
WDTCFG 91h | WDTPERIOD3 | WDTPERIOD2 | WDTPERIOD1 | WDTPERIODO WTIMERF ASTIMER WDTF WDTRESET oooooooob
RCAPOL 92h 0000
RCAPOH 93h 2000
RCAP1L 94h 0000
RCAP1TH 95h 000
RCAP2L 96h 0000
RCAP2H 97h o000
Reserved 98h 11111111b
TOTICLKCFG | 99h | TA1CLKCFG3 | TA1CLKCFG2 | TICLKCFG1 | T1CLKCFGO | TOCLKCFG3 | TOCLKCFG2 | TOCLKCFG1 | TOCLKCFGO o
TOCON 9Ah TOOVF TOEXF TODOWNEN | TOTOGOUT | TOEXTEN TRO TOCOUNTEN | TORLCAP o
T1CON 9Bh T1OVF T1EXF TIDOWNEN | TITOGOUT | TIEXTEN TR TICOUNTEN | TIRLCAP ooonr
T2CON 9ch T20VF T2EXF T2DOWNEN | T2TOGOUT | T2EXTEN TR2 T2COUNTEN | T2RLCAP o
T2CLKCFG 9Dh - - T2CLKSRC | T20UTEN | T2CLKCFG3 | T2CLKCFG2 | T2CLKCFG1 | T2CLKCFGO o
Reserved 9Eh - - - - _ _ _ R OOOOOOOOb
Reserved 9Fh - - - - - R _ B OOOOOOOOb
P2 AOh - - - - - - - - 1111
Reserved A1h - - - - _ _ _ R 00000000b
AUAQ A2h* o010
AUAT A3h* oot
AUCO Adh* oot
AUCH Ash* 0010

www.ramtron.com

page 7 of 114

VRS51L3174

rRAM RSN

" 0010
AUC2 ABh 0000b
" 0010
AUC3 A7h 0000b
INTEN2 A8h PCHGIEN1 AUWDTIEN PWMT47IEN PWMTOSIEN PWCIEN I2CUARTCI 12CIEN T2IEN OOOOOOOOb
1111
P3 BOh - - - - - - - - 1011b
" 0010
AUBODIV B1h 0000b
* 0010
AUBO B2h 0000b
" 0010
AUB1 B3h 0000b
" 0010
AURESO B4h 0000b
" 0010
AURES1 B5h 0000b
" 0010
AURES2 B6h 0000b
* 0010
AURES3 B7h 0000b
IPINFLAG BSh P37IF P36IF P35IF P34IF P31IF P30IF INTHIF INTOIF oooor
PORTCHG B9h PMONFLAG1 PCHGMSK1 PCHGSEL1 PCHGSELO PMONFLAGO PCHGMSKO PCHGSEL1 PCHGSELO OOOOOOOOb
0001
Reserved BAh - - - - - - - - 0000b
0000
Reserved BBh - - - - - - - - 0000b
0000
Reserved BCh - - - - - - - - 0000b
0000
Reserved BDh - - - - - - - - 0000b
Reserved BEh - - - - - - - -
Reserved BFh - - - - - - - -
1111
P4 con 1111b
AUSHIFTCFG C1h* SHIFTMODE ARITHSHIFT SHIFT5 SHIFT4 SHIFT3 SHIFT2 SHIFT1 SHIFTO OOOOJOOb
AUCONFIG1 C2h* CAPPREV CAPMODE OVCAPEN READCAP ADDSRC1 ADDSRCO MULCMD1 MULCMDO OOOOOOOOb
AUCONFIG2 C3h* AUREGCLR2 AUREGCLR1 AUREGCLRO AUINTEN - DIVOUTRG AUOV16 AUOV32 OOOOOOOOb
" 0000
AUPREVO C4h 0000b
" 0000
AUPREV1 C5h 0000b
" 0000
AUPREV2 Céh 0000b
" 0000
AUPREV3 C7h 0000b
0000
Reserved C8h 0000b
0000
Reserved Coh - - - - - - - - 0000b
0000
Reserved CAh - - - - - - - - 0001b
0000
Reserved CBh - - - - - - - - 0000b
0000
Reserved CCh - - - - - - - - 0000b
0000
Reserved CDh - - - - - - - - 0000b
0000
Reserved CEh - - - - - - - - 0000b
Reserved CFh - - - - - - - -
PSW DOh cy AC FO RS1 RSO ov - P 0000
0000b
Reserved D1h - - - - - - - -
Reserved D2h - - - - - - - -
Reserved D3h - - - - - - - -
Reserved D4h - - - - - - - -
Reserved D5h - - - - - - - -
IPININV1 D6h P371INV P361INV P35I1INV P341INV P33IINV P32IINV INT1INV INTOIINV OOOOOOOOb
IPININV2 D7h PO7IINV POGIINV POS5IINV PO4IINV PO3IINV PO2IINV PO1IINV POOIINV OOOOOOOOb

www.ramtron.com

page 8 of 114

VRS51L3174

rRAM RSN

IPINFLAG2 D8h PO7IF POGIF PO5IF PO4IF PO3IF PO2IF PO1IF POOIF OOOOOOOOb
XMEMCTRL Doh | EXTBUSCFG | EXTBUSCS ; - STRECH3 STRECH2 STRECH1 STRECHO | 0000 0000b
0000
Reserved DAh - - - - - - - - 0000b
0000
Reserved DBh - - - - - - - - 0000b
Reserved DCh - - - - - - - - 0000 0000b
Reserved DDH - - - - - - - - 0000 0000b
Reserved DEh - - - - - - - - 0000 0000b
Reserved DFh - - - - - - - - 0000 0000b
0000
ACC Eoh - - - - 0000b
DEVIOMAP Eh Reserved 0 12CALTMAP 0 UOALTMAP | T2ALTMAP TIALTMAP TOALTMAP oooooooob
INTPRI1 E2h TP37PRI U1P36PRI UOP35PRI PCOP34PRI TOP31PRI SRP30PRI STP33PRI INTOP32PRI éﬁﬁg;
INTPRI2 E3h | PCIPOOPRI AUPOGPRI PTHPOSPRI PTLPO4PRI | PWCP23PRI | I110POZPRI 12CPO1PRI T2POOPRI égggL
INTSRC1 E4h | INTSRC17 | INTSRC16 | INTSRC15 | INTSRC14 | INTSRC13 | INTSRC1.2 | INTSRC1.1 INTSRC1.0 &ﬁ%t
INTSRC2 E5h | INTSRC27 | INTSRC26 | INTSRC25 | INTSRC24 | INTSRC23 | INTSRC22 | INTSRC2.1 INTSRC2.0 &ﬁ%ﬁ
IPINSENS1 E6h | P37ISENS P36ISENS P35ISENS P34ISENS P33ISENS P32ISENS INTIISENS | INTOISENS &3%1
IPINSENS2 E7h | PO7ISENS POBISENS PO5ISENS PO4ISENS PO3ISENS PO2ISENS PO1ISENS POOISENS éﬁﬁi
0000
GENINTEN E8h ; GENINTEN 40000
FPICONFIG Eoh | FPILOCK1 FPILOCKO FPIIDLE FPIRDY 0 FPISBIT FPITASKA FPITASKO éﬁ%ﬁ
0000
FPIADDRL EAh 000b
0000
FPIADDRH EBh 0000b
0000
FPIDATAL ECh 0000b
0000
FPIDATAH EDh 5000b
FPICLKSPD | EEh FPICLKSPD3 | FPICLKSPD2 | FPICLKSPD1 | FPICLKSPDO &33&
0000
Reserved EFh - - - - - - - - 0000b
0000
B FOh 0000b
0000
MPAGE Fih 000b
DEVCLKCFG1 | F2h | SOFTRESET | OSCSELECT | CLKDIVEN | FULLSPDINT CLKDIV3 CLKDIV2 CLKDIV1 CLKDIVO 0110 0000b
DEVCLKCGF2 | F3h | CYOSCEN INTOSCEN ; ; CYRANGE! | CYRANGEO 0 ; 0100 1001b
PERIPHEN1 | F4h SPICSEN SPIEN I2CEN U1EN UOEN T2EN TIEN TOEN &ﬁ%t
PERIPHEN2 | F5h PWCIEN PWCOEN AUEN XRAM2CODE | IOPORTEN WDTEN PWMSFREN FPIEN 10000000b
DEVMEMCFG | Féh | EXTBUSEN FRAMEN - . - ; - SFRPAGE égﬁ%
PORTINEN F7h | Reserved (0) 1 1 P4INPUTEN | P3INPUTEN | P2INPUTEN | P1INPUTEN | POINPUTEN ﬁﬁuL
0000
USERFLAGS | Fsh 5000b
POPINCFG Foh | PO7INTOUTO | POBINTOUTO | POSINTOUTO | PO4INTOUTO | PO3INTOUTO | PO2INTOUTO | POTIN1OUTO | POOIN1OUTO fﬂﬁL
P1PINCFG FAh | P17INTOUTO | P16INTOUTO | P15INTOUTO | P14IN1OUTO | P13INTOUTO | P12IN1OUTO | P11INOUTO | P10INTOUTO ﬂﬁuL
P2PINCFG FBh | P27INTOUTO | P26INTOUTO | P25INTOUTO | P24IN1OUTO | P23INTOUTO | P22IN1OUTO | P21INTOUTO | P20IN1OUTO fﬂ&L
P3PINCFG FCh | P37INTOUTO | P36INTOUTO | P35INTOUTO | P34INTOUTO | P33INTOUTO | P32IN1OUTO | P31INTOUTO | P30IN1OUTO fﬂﬁL
P4PINCFG FDh | P47INTOUTO | P46INTOUTO | P45INTOUTO | P44INTOUTO | P43INTOUTO | P42INTOUTO | P41INTOUTO | P40IN1OUTO RS
1111
Reserved FEh - - - - - - - - 1111b
1111
Reserved FFh - - - - - - - - 1111b

www.ramtron.com

page 9 of 114

VRS51L3174

rRAM RSN

1.3 Bit Accessible Registers

As is the case with standard 8051s, all SFR registers in which the lower nibble of address is x0 or x8, are bit-

addressable. The bit-addressable registers allow bit-oriented instructions to alter individual register bit values.

TABLE 6:BIT ADDRESSABLE SFR REGISTERS

Rest;:ter R Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Rosat
PO 80h - - - - ; - - ; 111 1111b
INTENA 88h T1IEN U1IEN UOIEN PCHGIENO TOIEN SPIRXOVIEN | SPITXEIEN - 0000 0000b
P1 90h - } ; ; } ; - - 1111 11110
P2 Aoh - - - - - - - ; 111 1111b
INTEN2 A8h PCHGIEN1 AUWDTIEN PWMT47IEN PWMTO3IEN PWCIEN I2CUARTCI 12CIEN T2IEN 0000 0000b
P3 BOh - - - - - - - - 1111 1011b
IPINFLAGT B8h P37IF P36IF P35IF P34IF P31IF P30IF INT1IF INTOIF 0000 0000b
PSW DOh oy AC Fo RS1 RSO ov - P 0000 0000b
IPINFLAG2 D8h PO7IF POGIF POSIF PO4IF PO3IF PO2IF PO1IF POOIF 0000 0000b
ACC EOh - - - - - - - - 0000 0000b
GENINTEN Esh } ; - - - } GENINTEN | 0000 0000b
B Foh 0000 0000b
USERFLAGS | Feh 0000 0000b

www.ramtron.com

page 10 of 114

VRS51L3174

rRAM RSN

1 VRS51L3174 Reqisters & SFR

1.1 Accumulator, B and User Flags
Register
The VRS51L3174 accumulator is located at address

EOh on SFR pages 0 and 1. The accumulator is the
source and destination for many 8051 instructions.

TABLE 7: THE ACCUMULATOR - ACC oR A SFR EOH

1.3 Data Pointers

The VRS51L3174 includes two 16-bit data pointers
that are described in the following tables. The active
data pointer is controlled via a DPS register located at
SFR address 86h (see below).

TABLE 10: DATA POINTER 0 HIGH - DPHO SFR 83H

7 | 6] 51 41 3] 2 | 11 o
R/W, Reset = 0x00
ACCI[7:0]

The B register is mainly used for MUL and DIV
instructions, holding the MSB of the MUL instruction
and the remainder of the DIV instruction. It can also
be used as a general purpose register that is bit-
addressable. It is accessible on both SFR pages 0 and
1 at address FOh.

TABLE 8: B REGISTER - SFR FOH

7 | 6] 51 41 3] 2 1T 171 o
R/W, Reset = 0x00
B[7:0]

1.2 PSW Register

The PSW register is a bit-addressable register that
contains the status flags (CY, AC, OV, P), user flag
(FO) and register bank select bits (RS1, RS0) of the
8051 processor.

TABLE 9:THE PSW SFR REGISTER - PSW SFR DOH

7‘6‘5‘4‘3‘2‘1‘0

R/W, Reset = 0x00
DPTRO[15:8]
TABLE 11: DATA POINTER 0 LOW -DPLO SFR 82H
7 | 6] 5] 4] 3] 2] 1] o0
R/W, Reset = 0x00
DPTRO[7:0]
TABLE 12: DATA POINTER 1 HIGH - DPH1 SFR 85H
7 | 6] 5] 4] 3] 2] 1] o0
R/W, Reset = 0x00
DPTR1[15:8]
TABLE 13: DATA POINTER 1 LOW -DPL1 SFR 841
7 | 6] 5 1 4] 3] 2] 1] o0
R/W, Reset = 0x00
DPTR1[7:0]
TABLE 14: DATA POINTER SELECT REGISTER - DPS SFR 86H
7 6 5 4 3 2 1 0
R R R R R R R R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
71 unused
0 DPSEL DPS value
0: Selects DPTRO
1: Selects DPTR 1

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 CY Carry Bit Flag. Indicates that the last

addition/subtraction resulted in a carry or
borrow. The CY bit is cleared by other arithmetic
instructions, the JBC and CLR C instructions.

Auxiliary Carry Bit Flag. Indicates that the last
addition/subtraction resulted in a carry or borrow
from the higher nibble. The AC bit is cleared by
other arithmetic instructions and by the JBC
instruction.

5 FO User General Purpose Flag

4:3 RS1:RS0 Register Select Address Bank for RO — R7
00 RO to R7 From 00h to 07h
01 RO to R7 From 08h to OFh
10 RO to R7 From 10h to 17h

11 RO to R7 From 17h to 1Fh

Overflow Flag

Indicates that the last addition/subtraction
resulted in a carry/borrow/overflow. The OV bit
is cleared by other arithmetic instructions and
the JBC instruction.

-
Tn
-

User General Purpose Flag

0 P Parity Flag

1.4 Stack Pointer

The stack pointer is a register located at address 81h
of the SFR register area whose value corresponds to
the address of the last item that was put on the
processor stack. Each time new data is put on the
processor stack, the value of the stack pointer is
incremented.

TABLE 15: STACK POINTER - SP SFR 81H

7 | 6] 5] 41 3] 2 T 171 o
R/W, Reset = 0x07
SP[7:0]

By default, the stack pointer value is 07h. The stack
can be set anywhere in the internal SRAM from
address 00h to FFh.

Each time a function call is performed or an interrupt is
serviced, the 16-bit return address (2 bytes) is stored
on the stack. Data can be manually placed on the
stack by using the PUSH and POP functions.

www.ramtron.com

page 11 of 114

VRS51L3174

rRAM RSN

1.5 SFR Structure

The VRS51L3174 peripheral registers are accessible
through two SFR pages mapped directly into the 80h
to FFh address range in the 256 bytes of memory.

Most peripherals are accessible via both SFR pages.
The following peripherals are only accessible via SFR
Page 0:

I2C Interface

SPI Interface

PWC Interface

FRAM Memory configuration

o O O O

The enhanced arithmetic unit is only mapped onto
SFR Page 1.

1.6 Accessing SFR Page 1

To access SFR Page 1 registers, set the SFRPAGE
bit of DEVMEMCEFG register to 1, as shown below:

ORL DEVMEMCFG,0x01 ; SELECT SFR PAGE 1

Returning to SFR Page 0 is done by clearing
SFRPAGE bit of the DEVMEMCEFG register.

ANL DEVMEMCFG,0xFEH ;SELECT SFR PAGE 0

1.7 Indirect Addressing of the SFR

It is possible to access the SFR register in indirect
addressing mode. Unique to the VRS51L3174, this
feature enables efficient SFR content data transfers.

When the SFRINDADR bit 4 of the PCON register is
set to 1, the A5h (NOP) instruction functions as an
indirect SFR access.

Indirect SFR addressing uses the accumulator as well
as the four bank Rn registers of SRAM memory area
00h to 1Fh to indirectly transfer the data to and from
the SFR memory space.

1.7.1 Indirect SFR Register Write

For an indirect SFR write operation, perform the
following steps after the SFRINDADR bit of the PCON
register is set to 1:

o Write the data value into the accumulator.

o Hold the SFR address where the write
operation is performed in the internal SRAM
memory from address 00h to 1Fh.

The same SRAM memory area [00h to 1Fh] holds four
sets of 8x Rn registers that are used for indirect
addressing. Only one set of Rn registers is active at
any given time and is defined by the value of the bits
RS1 and RSO of the PSW register.

For an indirect SFR write operation, bit 7 of the SFR
address written into Rn must be cleared. For example,
to write to the SPITXO register located at address C4h,
44h should be written into the Rn register.

Example using the Bank 1, RO register:

MOV RO,#44 ;Targetis SFR C4h (with Bit 7 stripped)

Example using the Bank 1, R3 register:

MOV R3,#44 ;Targetis SFR C4h (with Bit 7 stripped)

The next step involves calling the SFR indirect
addressing function. This is a two-step process
composed of the A5h instruction itself followed by the
physical address of the Rn register, where the SFR
address is stored.

If the RO register of Bank 1 has been used, the next
instructions should be:

db. OxA5
db. 0x00

If the R3 register of Bank 0 has been used, the next
instructions should be:

db. OxA5
db. 0x03

This would also work for the Rn registers located in
Bank 4. For example, if the RO register of Bank 4
contains the target SFR address, the instruction
should be:

db. 0xA5
db. 0x18

Once the A5h instruction is executed, the processor
will take the value stored in the accumulator and put it
into the SFR address identified by the Rn register
address.

;/I Perform Indirect Write of Value OXAA
;/l into USERFLAGS SFR address (0xF8) using indirect SFR WRITE
ORL 0x87, #0x10; ;SET A5 for indirect SFR addressing
MOV 0xF8,#00 ;Clear USERFLAGS
MOV A, #0xAA ;Acc = AAh
MOV RO, #0x78 ;RO (bank1) = address USERFLAGS (F8h)
;with Bit 7 cleared
.db OxA5 ;Perform the indirect SFR write
.db 0x00 ;After the second .db instruction,
;P2 contains the value OXAA

ANL 0x87, #OxEF; ;Set A5 for NOP operation

www.ramtron.com

page 12 of 114

VRS51L3174

rRAM RSN

1.7.2 Indirect SFR Read

Indirect SFR address read functions similarly to
indirect SFR write, the main differences being that the
SFR target address stored in the Rn register is the
actual SFR address (bit 7 = 1) with the accumulator
containing the current SFR data.

;/I Perform Indirect Read of Value in USERFLAGS SFR Address (0xF8)
;/l into ACC using indirect SFR READ function

ORL 0x87, #0x10; ;SET A5 for indirect SFR addressing
MOV A ,#0x00 ;Acc = 00h
MOV RO, #0xF8 ;RO (bank1) = address P2 with Bit 7 cleared
.db OxA5 ;Perform the indirect SFR Write
.db 0x00 ;After the second .db instruction,
;Acc contain the value OXAA
ANL 0x87, #OxEF; ;Set A5 for NOP operation

1.8 User Flags Register

The user flags register is a bit-addressable register
used for condition testing or as a general purpose
storage register.

TaABLE 16: USERFLAGS REGISTER - USERFLAGS SFR F8H

7 | 6] 5] 41 3] 2 T 171 o
USERFLAGS, RESET = 0x00
USERFLAGS[7:0]

www.ramtron.com

page 13 of 114

VRS51L3174

rRAM RSN

2 Memory Architecture Overview

The following is an overview of the VRS51L3174’s
memory structure:

FIGURE 3: VRS51L3174 DATA AND PROGRAM MEMORY STRUCTURE

FFFFh FFFFh FFFFh

External Data
BUS Access
(Upper 32KB)
A00Oh (DEVMEMCFG.7 =
OFFFh [FRAn [t

(8KB)

cenencres =1 8000h 8000h

8000h Program
Memory

64KB Flash
(No Exter

mmmmmmmmmmmm

OFFFh | sccess) OFFFh

Fn| 4096 bytes of
SRAM
SFR Page 0 oeviencrao-o) (accessible
using MOVX
instruction)

Upper 128 bytes SRAM
(indirect addressing only)

Lower 128 bytes SRAM

00h 0000h 0000h

The VRS51L3174 includes 64KB of on-chip Flash
memory that can be used as program memory or as
nonvolatile data storage.

The Flash memory is programmed via the JTAG or the
FPI interface. The VRS51L3174 cannot be
programmed in parallel mode (Section 16 of this
datasheet explains the FPI interface operation).

2.1 Internal Scratch Pad SRAM (256
Bytes)

As in standard 8051s, the VRS51L3174 includes 256
bytes of internal scratch pad SRAM: the lower 128
bytes are accessed by either direct or indirect
addressing; the upper 128 bytes are accessed by
indirect addressing only. Using direct addressing for
the upper 128 bytes of scratch pad SRAM will access
the SFR register area.

2.2 Integrated 4KB SRAM Block

The VRS51L3174 includes a 4KB block of SRAM that
is mapped from address 0000h to OFFFh on the
external memory bus. This SRAM can be used for
general purpose data memory or program memory.

The 4KB SRAM memory is always active and it is
accessed using MOVX instructions.

Although the SRAM is mapped on the external
memory, accessing it will have no impact on the I/O
pins used for the external data memory bus.

2.21 Running Programs from the External
4KB SRAM Block

The VRS51L3174 processor can execute code directly
from the external 4KB of SRAM. Running the program
from the SRAM memory can significantly save power,
especially at lower operating frequencies. This is
because SRAM power consumption is directly
proportional to the access frequency, while power
consumption of the Flash memory is less dependant of
the VRS51L3174 operating frequency.

To execute code from the 4KB SRAM block:

1. Copy the code from the Flash to the SRAM
and apply the appropriate address shifting, if
required.

2. Before switching to an XRAM operation, the
program must execute from a Flash address
higher than OFFFh.

3. Set the XRAM2CODE bit (bit 4) of the
PERIPHENZ register.

4. Jump to the code copied into XRAM.

The following program example copies code from the
Flash memory to the XRAM memory and switches the
program execution to the XRAM.

;--------VRS51L3174 - Running program into XRAM -----==--------
;- DESCRIPTION: This program gives an examples on how
- to switch code execution from Flash to XRAM

include VRS51L3174_RIDE.inc

j-m—e Variable definition --------------

CPTR EQU 030h
org 00000H
LJMP INIT

iNIT: MOV PERIPHEN2, #08H ;ENABLE 10
MOV P1PINCFG,#00H ;CONFIGURE P1 AS OUTPUT

MOV PERIPHEN1,#00000000B;
MOV PERIPHEN2,#00001000B
;BIT4 - XRAM2CODE =0

;--COPY CODE FROM FLASH INTO XRAM MEMORY
CLR DPS
MOV DPTR,#01000H ;SET DPTRO (POINT TO CODE)
MOV DPS#01H ;SWITCH TO DPTR1
MOV DPTR,#0000H ;SET DPTR1 (POINT TO XRAM)

COPYLOOFP:

MOV DPS,#00 ;POINT TO DPTRO (FLASH)
CLR A

MOVC A @A+DPTR ;

INC DPTR ;INC DPTRO (FLASH)

MOV DPS#01H
MOVX @DPTRA
INC DPTR

:SWITCH TO DPTR1 (XRAM)
:WRITE VALUE INTO XRAM
JINC dptr1 (XRAM)

MOV A DPH1
CJNE A #03,COPYLOOP
LJMP OUTSIDEXRAM

;CHECK IF DPTR1 (XRAM) REACH ADDRESS 0300H

;JUMP TO FLASH LOCATION OUTSIDE XRAM AREA

www.ramtron.com

page 14 of 114

VRS51L3174

rRAM RSN

;- SECTION OF CODE OUTSIDE THE XRAM

ORG 2000H
OUTSIDEXRAM:
MOVPERIPHEN2,#18H ;ACTIVATE XRAM2CODE BIT AND IOPORTS
;ANY JUMP TO THE 0000H - OFFFH AREA SHOULD
EXECUTE FROM XRAM

LJMP 0100H 3JUMP TO THE P1 TOGGLE LOOP COPIED INTO XRAM
MOV P1,#00 ;FORCE P1 = 0X00H IF STUCK INTO THE FLASH
LOOP: LJMP LOOP ;INFINITE LOOP

;— Code to be moved into XRAM from address 0000h to 02FFH
; ASSUMED CODE CONTAINED FROM 1000H TO 12FFH...
; WILL BE COPIED FROM 0000H TO 02FFH INTO XRAM

- XRAM_Port_Toggle:

org 1100h

TOGGLE:
MOV P1,#00H ;SET PORT 1 = 00H
LCALL 0200H ;CALL DELAY FUNCTION
MOV P1,#0FFH ;SET PORT 1 = FFH
LCALL 0200H ;CALL DELAY FUNCTION
LJMP 0100H

org 1200h

;- DELAY1MSTO : 1MS DELAY USING TIMERO

bELAY1 MS: MOV CPTR #1

MOV A PERIPHEN1
ORL A,#00000001B
MOV PERIPHEN1,A

;LOAD PERIPHEN1 REG
;ENABLE TIMER 0O

DELAY1MSLP:
MOV THO,#063H
MOV TLO,#0COH

; 6TIMERO RELOAD VALUE FOR 1MS AT 40MHZ

MOV TOT1CLKCFG,#00H ;NO PRESCALER FOR TIMER 0 CLOCK
MOV TOCON,#00000100B ;START TIMER 0, COUNT UP

DWAITOVTO:
MOV A, TOCON ;READ TIMER 0 CONTROL, WAIT FOR OVERFLOW
ANL A #080H ;ISOLATE TIMER OVERFLOW FLAG
Jz DWAITOVTO ;LOOP AS LONG AS TIMER 0 DONT OVERFLOW

MOV TOCON,#00H ;STOP TIMER 0
DJINZ CPTR,DELAY1MSLP

MOV A,PERIPHEN1
ANL A#11111110B
MOV PERIPHEN1,A
RET

;LOAD PERIPHEN1 REG
;DISABLE TIMER 0

2.3 External Data Memory Bus

The VRS51L3174 provides access to the external data
bus memory, enabling direct interfacing of the chip to
external devices such as SRAM, data converters, etc.
Activation of the external data memory bus, the FRAM
(ferroelectric random access memory) memory and
the active SFR page is controlled via the
DEVMEMCEFG register.

TABLE 17:DEVICE MEMORY CONFIGURATION REGISTER - DEVMEMCFG SFR F6H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W RW R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 EXTBUSEN When set this bit activates the external data bus

access through Port 0, Port 2, P3.6 and P3.7

6 FRAMEN To activate the FRAM memory module both
EXTBUSEN and the FRAMEN bit must be set to
1.

5:2 Not used

0 SFRPAGE When set, SFR Page 1 is selected

The EXTBUSEN bit of the DEVMEMCFG register
controls the access devices connected to the external
data memory bus shared with ports PO, P2, P3.6 and
P3.7. When the EXTBUSEN bit is set to 1 and the
FRAMEN bit is set to 0, any MOVX instructions with an
address >= 0x8000 will activate the external data
memory bus pins.

To activate the FRAM memory module, set both the
FRAMEN and the EXTBUSEN bits to 1. Any MOVX
instructions with a target address from 0x8000 to
Ox9FFF will then target the FRAM memory and there
will be no activity on ports PO, P2, P3.6 and P3.7. A
roll-over to OxA000 will occur if read or write
operations to FRAM are performed with a target
address larger than Ox9FFF.

Bit 0 of the DEVMEMCFG defines the active SFR
page.
Accessing the FRAM memory has no impact on the

I/O pins associated with the external data memory
bus.

www.ramtron.com

page 15 of 114

VRS51L3174

rRAM RSN

2.4 Integrated 8KB FRAM Memory

The VRS51L3174 also includes 8192 bytes of FRAM
mapped into 8000h to 9FFFh of the external memory
address space. FRAM memory is ideal for
applications that require frequent writes and/or
nonvolatile data storage.

241 Using FRAM Memory

As previously mentioned, the FRAM memory is
accessed using the MOVX instruction in the 8000h to
9FFFh external memory address.

Two SFR registers (FRAMCFG1 and FRAMCFG2)
located at address DCh and DDh on SFR Page 0
(respectively) configure the FRAM module’s operation.

TABLE 18:FRAM CONFIGURATION REGISTER 1 — FRAMCFG1 SFR DCH

7 6 5 4 3 2 1 0
RIW RIW RW RW W W W W
1 0 0 0 0 0 0 0
Bit Mnemonic Description
7 FREADIDLE W:

1:.Further accelerate FRAM read when
burst mode is activated (BURSTEN = 1)
0: Normal read mode

R:
0: FRAM module is busy
1: FRAM module is IDLE

6 Reserved This bit must bit must be kept to 0

5:4 FRAMCLK][1:0] FRAM module operation speed
00: Sysclk/2
01: Sysclk/3
10: Sysclk/4

11: Sysclk/8

3 BURSTEN W:

1: Activate burst mode operation. The
MOVX operations to FRAM space are
frozen until data has been read/written
0: Normal mode operation

R: Read as 0

2:1 FRAMOPI[1:0] W: FRAM Operation

00: Enable transfer of FRAMCFG2 defined
parameters to FRAM module.

01: Disable write operations from
FRAMCFG2 to the FRAM module

10: Prepare for read FRAMCFG2 register
11: Write FRAMCFG2 register to FRAM
module

should be at 10MHz or lower. When running from the
internal oscillator the FRAMCLK[1:0] should be
configured to either 10 or 11.

TABLE 19:FRAMCLK][1:0] SETTING vS. FRAM MODULE CLOCK

FRAMCLK][1:0] FRAM module FRAM module
setting Clock speed frequency
(Fosc =40MHz)
00 Not 20MHz
recommended
01 Not 13.3MHz
recommended
10 Sysclk/4 10MHz
11 Sysclk/8 5MHz

Bit 6 of the FRAMCFGH1 register is reserved and must
be written as 0 when write operations are performed.

When set to 1, bit 3 of the FRAMCFG1 register
(BURSTEN) will activate burst mode, enabling faster
data transfers to/from the FRAM for both read/write
operations to/from consecutive addresses (see the
section on burst mode operations for more detail).

When burst mode is activated, writing a 1 to the
FREADIDLE bit will activate fast burst read mode,
which further accelerates FRAM memory read
operations.

The FRAMOP[1:0] and RUNFRAMOP bits of the
FRAMCFG1 register are used to:

1. Initiate FRAM module operations related to the
activation/deactivation of the write protection
feature on the FRAM memory.

2. Read the status of the FRAM’s Write Enable
Latch.

There are four operations controlled by the
FRAMOPI1:0] bits, as described in the following table:

TABLE 20:FRAM OPERATION ACCORDING TO FRAMOP[1:0] SETTING

R: Read as 00

0 RUNFRAMOP W : When this bit is set to 1, the selected

FRAM operation is executed

R: Read as 0

FRAMOPI[1:0] | FRAM Operation

00 Enables transfer of FRAMCFG2 defined
parameters to FRAM module

01 Disables write operations from FRAMCFG2 to the
FRAM module

10 Updates the FRAMCFG2 register contents (read)

11 Transfers the contents of the FRAMCFG2 register
to the FRAM module

Bit 7 of the FRAMCFG1 register (FREADIDLE) when
read, indicates the status of the FRAM module.
Reading a 1 indicates that the FRAM module is IDLE
and ready to receive commands.

Writing a 1 into the FREADIDLE bit will activate fast
read burst mode, as long as the BURSTEN bit is also
setto 1.

FRAMCLK][1:0] bit 5,4 of the FRAMCFG1 register
controls the FRAM module operating clock frequency.
On the VRS51L3174, the FRAM Memory module

The FRAMOPI[1:0] and the RUNFRAMOP bits work in
conjunction with the FRAMCFG2 register.

The FRAMOPIJ1:0] bits define which operation will be
performed. When set to 1, the RUNFRAMOP bit will
initiate the operation selected by the FRAMOP[1:0] bit.
The FRAMOP[1:0] and RUNFRAMOP bits can be
written simultaneously or sequentially.

www.ramtron.com

page 16 of 114

VRS51L3174

rRAM RSN

The FRAM module requires a number of cycles to
execute each operation. During that time, the
processor continues to operate. In cases where read
or write access to the FRAM is initiated soon after a
FRAMORP is executed, we recommend waiting until the
FRAMIDLE bit is set to 1 before performing the
operation.

The FRAMCFG2 register is used to enable the write
protect option and monitor the current state of the
block protect configuration and FRAM Write Enable
Latch flag (FRAMWEL bit). FRAMWEL is a read-only
flag.

TABLE 21:FRAM CONFIGURATION REGISTER 2 — FRAMCFG2 SFR DDH

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 0
6 0
5 0
4 0
3:2 FRAMBP[1:0] FRAM Memory Block Protect
00: None
01: 8800h — 8FFFh (upper %)
10: 9000h — 9FFFh (upper %)
11: 8000h — 9FFFh (all)
1 FRAMWEL R: Indicates the state of the WEL flag
0 0

FRAMCFG2 SFR mirrors the protection configuration
register in the FRAM memory. As such, the following
steps are required to access the FRAMCFG2 register:

1) Write the configuration value into the
FRAMCFG2 register.

2) Activate the write to FRAMCFG2 register
operation by writing 07h into the FRAMCFG1
register.

Example:

MOV FRAMCFG2 #value to be written;
MOV FRAMCFG1,#0x07;

Similarly, before reading the FRAMCFG2 register, its
contents should be refreshed by performing the
following operations:

1) Activate the read from FRAMCFG2 register
operation by writing 05h into the FRAMCFG1
register.

2) Read the contents of the FRAMCFG2 register.

Example:

MOV FRAMCFG1,#0x05;
MOV destination,FRAMCFG2;

The FREADIDLE bit of the FRAMCFG1 register
should be monitored to ensure that the FRAM module
is in IDLE mode before initiating a read or write
operation.

Example:

WAITILDE: MOV A,FRAMCFG1;
ANL A#0x80;
Jz WAITIDLE;

24.2 Accessing the FRAM in Normal Mode

Access to the FRAM memory requires using the
MOVX instruction in the 8000h to 9FFFh external
memory address range. Before the FRAM can be
accessed, it must first be activated by setting both
EXTBUSEN bit 7 and FRAMEN bit 6 of the
DEVMEMCEFG register located at address F6h on SFR
Page 0 to 1.

The FRAM access time, during which the processor is
stopped, depends on the operating frequency of the
processor, as well as the configuration of the
FRAMCLK][1:0] bit of the FRAMCFGH1 register.

The following table provides typical durations of
read/write operations in various operating modes:

TABLE 22:FRAM READ AND WRITE TIME

FRAMCLK[1:0] = 10
(Sysclk/4)
Mode Read Write
Normal 3.6uS 4.9uS
Burst* 2.3uS 0.7uS
Read Burst* 1.6uS 0.7uS

*Based on 100 consecutive read and write operations in burst mode

The processor's program counter will stop at the
MOVX instruction while a FRAM read or write is
performed. As such, it is unnecessary to verify
whether the device is idle (FREADIDLE = 1) before
initiating a FRAM read/write, unless an access to
FRAMCFG2 was previously initiated.

Note: An interrupt that occurs during a FRAM access
will be serviced upon completion of the access
operation.

www.ramtron.com

page 17 of 114

VRS51L3174

rRAM RSN

Example: Performing a FRAM Read Operation

The following assembly code provides an example of a
FRAM memory read:

;—---FRAM Initialization

ORL DEVMEMCFG,#COh ;Activate the FRAM module
MOV FRAMCFGH1,#20h

;—-Check FRAM module is ready optional and needed only if a FRAM operation through
; FRAMOP[1:0] have been initiated before.

FRAMRDY: MOV A FRAMCFG1
ANL A#80h ;isolate FREADIDLE bit
JZ FRAMRDY ;loop until FREADIDLE = 1
;--Performing a read operation at address 8100h
FRAMWRITE: MOV DPTR,#8100h

MOVX A@DPTR

Example: Performing a FRAM Write Operation

The following assembly code provides an example of
a FRAM memory write:
;----FRAM initialization

ORL DEVMEMCFG#COh ;Activate the FRAM module
MOV FRAMCFGH1,#21h ;Set the write enable Latch

;--Check FRAM module is ready optional and needed only if a FRAM operation through
; FRAMOP[1:0] have been initiated before.

FRAMRDY: MOV A FRAMCFG1
ANL A#80h ;isolate FREADIDLE bit
Jz FRAMRDY ;loop until FREADIDLE = 1
MOV ADATA ;retrieve data to be written in FRAM

;--Performing a write operation at address 8100h
MOV DPTR,#8100h
MOVX @DPTRA

2.4.3 FRAM Burst Mode Operation

The VRS51L3174’'s FRAM memory can run in burst
mode, enabling faster data transfers from/to the FRAM
memory for consecutive address read/write
operations.

FRAM Burst Write

For write operations, burst mode is activated by setting
the BURSTEN bit of the FRAMCFG1 register to 1.

The burst mode operation takes advantage of the
double buffering capability of the FRAM memory
module. This allows the processor to write the next
data byte to the FRAM memory module before
completion of the current write cycle.

Operating in burst write mode requires that the
following conditions be met:

e The MOVX write operation to the FRAM must
be performed on consecutive incremental
addresses.

e The next MOVX write instruction to the FRAM
must be performed within a predefined number
of system clocks.

e Once initiated, only FRAM write operations
can be performed. The program cannot

perform a FRAM write operation and then a
FRAM read operation without exiting burst
mode.

The table below shows the number of system clock
cycles allowed between MOVX write instructions to the
FRAM memory in burst mode:

TABLE 23:FRAM BuRsT WRITE — MAX NUMBER OF CYCLES NEXT MOVX INSTRUCTION

FRAMCLK]1:0] Number of processor cycles
setting for next MOVX write

10 28

11 58

Failure to provide the next data byte within the
required time, or performing a MOVX write operation
at a nonconsecutive address will cause data loss.
There is no flag or interrupt to indicate that such a
condition has occurred.

Example: Burst Mode Write

MOV DEVMEMCFG,#0CO0h;Enable FRAM

()

MOV FRAMCFGH1,#28h; ;Set FRAM in burst mode

MOV RO,#0A0h ;Initialize a pointer to IRAM

MOV R2#100 ;prepare to perform 100 write operations
MOV DPTR,#08000h ;Set DPTR to point to FRAM first address

BURSTREAD: MOV A @RO ;retrieve data from IRAM (3)

MOVX @DPTRA ;Copy Data into FRAM (uP will stop)
INC DPTR ;point to next FRAM address (2)
INC RO ;point to next IRAM address (2)
DJNZ R2,BURSTREAD ;Perform 100 write (3)

FRAM Burst Read

The FRAM memory module offers two burst read
modes (basic and fast).

The basic FRAM burst read mode is activated by
setting the BURSTEN bit of the FRAMCFG1 register to
1.

Fast FRAM burst read mode is activated by setting
both the BURSTEN and the FREADIDLE bits of the
FRAMCFG1 register to 1.

The burst mode operation takes advantage of the
double buffering capability of the FRAM memory
module. This allows the FRAM module to prepare the
next data byte to be read before the current read cycle
is complete.

www.ramtron.com

page 18 of 114

VRS51L3174

rRAM RSN

As is the case for FRAM burst write mode, burst read
mode requires the following similar conditions to be
met:

e MOVX read operation to the FRAM must be
performed on consecutive incremental
addresses.

e The next MOVX read instruction from the
FRAM must be performed within a predefined
number of system clocks. When the
FREADIDLE bit is set to 1, the number of
system clock cycles allowed between read
instructions is reduced by a factor of 2.

e Once initiated, only FRAM read operations can
be performed. The program cannot perform
FRAM read operations and then FRAM write
operations without exiting burst mode.

The table below shows the number of system clock
cycles allowed between MOVX read instructions to the
FRAM memory in burst mode:

TABLE 24:FRAM BuRsT READ — MAX NUMBER OF CYCLES NEXT MOVX INSTRUCTION

FRAMCLK][1:0] | Number of cycles for next
setting MOVX read instruction
(FREADIDLE=1/0)
10 30/58
11 62/118

Failure to perform a MOVX read within the predefined
number of cycles or performing a MOVX read
operation at a nonconsecutive address will cause data
loss. There is no flag or interrupt to indicate that such
a condition has occurred.

Example: Burst Mode Read

MOV DEVMEMCFG,#0C0h;Enable FRAM

()

MOV FRAMCFG1,#0A8h; ;Set FRAM in burst mode + Burst Read mode
MOV RO,#0AOh ;Initialize a pointer to IRAM

MOV R2#100 ;prepare to perform 100 read operations
MOV DPTR,#08000h ;Set DPTR to point to FRAM first address

BURSTREAD: MOVX A@DPTR ;Fetch Data from FRAM (uP will stop)

MOV @RO,A ;Write data into IRAM (3)

INC DPTR ;point to next FRAM address (2)
INC RO ;point to next IRAM address (2)
DJINZ R2,BURSTREAD ;Perform 100 Read (3)

244 Exiting FRAM Burst Mode

The FREADIDLE bit will remain at 0 as long as the
device is in burst mode. Exiting burst mode may be
required in the following instances:

e Changing the target address of a read or write
operation to a nonconsecutive one.

e Changing the operation from read to write or
write to read.

Exit burst mode by monitoring the FREADIDLE bit of
the FRAMCFG1 register until it returns to 1,
corresponding to the IDLE condition.

2.4.5 FRAM Write Protect

Two methods can be employed to enable the
VRS51L3174’s FRAM write protect feature. The first
involves configuring the FRAM access as read-only
when the device is programmed. This can be
executed via the options menu in Versa Ware JTAG
software. This method supersedes the FRAM block
protection feature.

The second method is via the processor, by accessing
the FRAMCFG1 and FRAMCFG2 registers. The
values written to the FRAMBP[1:0] bits of the
FRAMCFG2 register define which region of the FRAM
memory will be protected:

TABLE 25:FRAM BLocK PROTECT

FRAMBP[1:0] Protected FRAM Addresses
00 None
01 8800h — 8FFFh (upper %4)
10 9000h — 9FFFh (upper %)
11 8000h — 9FFFh (all)

The following steps are required to apply FRAM
memory protection from the processor:

1. Write 01h to the FRAMCFG1 register to
activate the FRAMWEL bit (enables update of
FRAMCFG2 register).

2. Read the FREADIDLE bit 7 of the FRAMCFG1
register and wait until it reaches 1, indicating
that the FRAM module is idle.

3. Configure the value of the FRAMCFG2
register: Set the FRAMBP[1:0] bits to select
which zone of the FRAM should be write-
protected and set the FRAMWP bit to 1.

4. Write 0x07 to the FRAMCFG1 register to
execute the FRAM module write protect
operation.

5. Read the FREADIDLE bit 7 of the FRAMCFG1
register and wait until it reaches 1, indicating
that the FRAM module is idle.

6. Write 03h into the FRAMCFG1 register to
deactivate access to write to the FRAMCFG2,
(protection from inadvertent writes).

7. Read the FRAMCFG2 register to verify that
the block protect operation was successful.

www.ramtron.com

page 19 of 114

VRS51L3174

rRAM RSN

Example: FRAM Block Protect

The following is a code example to perform a FRAM
memory block protect:

// //
1 void FramProtect(char frambp) //
1

/I Description: Apply Block Protect on V3K FRAM

"

/I Input parameters:

/I char value corresponding to the FRAMBP[1:0] of FRAMCFG2 register
I

// Output parameters:

/I None
//- //

void FramProtect(char frambp)

frambp &= 0x03;
frambp = frambp << 2;

/IFRAMBP is 2 bit only
/Ishift frambp value to position at bits 3:2

FRAMCFG1 = 0x21; //Set FRAMWEL = 1 Enable Write (FRAMOP = 00)
while(!(FRAMCFG1&0x80)); //Wait FREADIDLE == 1 (FRAM IDLE)

FRAMCFG2 = frambp; /[Transfer frambp value into FRAMCFG2

FRAMCFG1 = 0x27; //Execute Transfer of FRAMCFG2 register content

/lto FRAM Module
while(!(FRAMCFG1&0x80)); //Wait FREADIDLE == 1 (FRAM IDLE)

FRAMCFG1 = 0x23; /IClear FRAMWEL (FRAMOP = 01)
while(!(FRAMCFG1&0x80)); //Wait FREADIDLE == 1 (FRAM IDLE)

/I Reading the WEL and the BP bits (optional)
/IFRAMCFG1 = 0x25; /lread FRAMCFG2
/lwhile(((FRAMCFG1&0x80)); //Wait FREADIDLE == 1 (FRAM IDLE)

Ylend of FramProtect

246 FRAM Access in C Example:

The following program provides examples of FRAM
access in C.

//. //

/I V3K_FRAM_Use_Example_SDCC.c //
1/- //

4

/I This program show how to perform the following operations:
"

/l -Enables the FRAM memory

/I -Deactivate the FRAM protection (This step is optional)

/I -Fill the FRAM with 0x55

/I -Read FRAM address 0x8100

/I -Write 0x23 at FRAM address 0x8100

/I -Read Content of address 0x8100

/I - Activate FRAM Write Protect

/I -"Try" clearing the (protected) FRAM

/I -Deactivate the FRAM protection

/I -Clear the FRAM

/I -Show how to Read the FRAM Block protect configuration
1/-

#include <VRS51L3174_SDCC.h>

//--Init pointer to FRAM base address

xdata at 0x8000 unsigned char frambase; /it a char variable pointing to FRAM
xdata unsigned char * data framptr = &rambase ; //Init a pointer in IRAM pointing to the
frambase var.

//. //

4 MAIN FUNCTION "
/]. /1l

void main (void){
volatile idata int cptr= 0x00;
volatile idata char framread = 0x00;

/lgeneral purpose counter

DEVMEMCFG |= 0xCO; /IActivate the FRAM
/I-- Deactivate FRAM Write Protect (Not needed if FRAM not initialy protected)
FRAMCFG1 = 0x21; //ISet FRAMWEL =1
/[Enable Write (FRAMOP = 00)
while(!(FRAMCFG1&0x80)); //Wait FREADIDLE == 1 (FRAM IDLE)
FRAMCFG2 = 0x00; //Configure FRAMCFG2 to remove
/IFRAM content Protection

FRAMCFG1 = 0x27; /IExecute Transfert of FRAMCFG2

/Imodule to FRAM Module
while(!(FRAMCFG1&0x80)); /Wait FREADIDLE == 1 (FRAM IDLE)
FRAMCFG1 = 0x23; //Disable the write operations
/lfrom FRAMCFG2 to the FRAM Module
while(!(FRAMCFG1&0x80)); /Wait FREADIDLE == 1 (FRAM IDLE)
/I--Fill the FRAM with 0x55

for(cptr = 0; cptr < 0x2000; cptr++)
*(framptr+cptr) = 0x55;

//--Read Content of address 0x8100 and place it into framread
framread = *(framptr + 0x0100) /[framread will contain 0x55

//--Write 0x23 at address 0x8100 in FRAM (offset of 0x0100)
*(framptr + 0x0100) = 0x23;

//--Read Content of address 0x8100 and place it into framread
framread = *(framptr + 0x0100); /fframread will contain 0x23
framread = *(framptr + 0x0101); /fframread will contain 0x55

/I-- Activate FRAM Write Protect
FRAMCFG1 = 21; //Set FRAMWEL = 1 Enable Write
/(FRAMOP = 00)

while(!(FRAMCFG1&0x80)); //Wait FREADIDLE == 1 (FRAM IDLE)

FRAMCFG2 = 0x0C; /IConfigure FRAMCFG2 to protect

/lthe entire FRAM

FRAMCFG1 = 0x27; //IExecute Transfert of FRAMCFG2 module

/lto FRAM Module

while(!(FRAMCFG1&0x80)); /Wait FREADIDLE == 1 (FRAM IDLE)

FRAMCFG1 = 0x23;

while(!(FRAMCFG1&0x80));

/IClear FRAMWEL (FRAMOP = 01)
/Wait FREADIDLE == 1 (FRAM IDLE)

/[--Clear the FRAM content (will not work if FRAM protected)
for(cptr = 0; cptr < 0x2000; cptr++)
*(framptr+cptr) = 0x00;

//-- Deactivate FRAM Write Protect (Not needed if FRAM not initialy protected)
FRAMCFG1 = 0x21; //Set FRAMWEL = 1
/I[Enable Write (FRAMOP = 00)
while(!(FRAMCFG1&0x80)); /Wait FREADIDLE == 1 (FRAM IDLE)
FRAMCFG2 = 0x00; //Configure FRAMCFG2 to remove
/IFRAM content Protection
/lExecute Transfert of FRAMCFG2 module to
/IFRAM Module
/Wait FREADIDLE == 1 (FRAM IDLE)

FRAMCFG1 = 0x27;
while(!(FRAMCFG1&0x80));
FRAMCFG1 = 0x23; //Disable the write operations
/lfrom FRAMCFG2 to the FRAM Module
while(!(FRAMCFG1&0x80)); /Wait FREADIDLE == 1 (FRAM IDLE)
/|--Clear the FRAM content (Will work unless FRAM is configured as Read Only at
programming time)

for(cptr = 0; cptr < 0x2000; cptr++)

*(framptr+cptr) = 0x00;

while(1);

//--Optional Read of the FRAM Block protect configuration
/IFRAMCFG1 = 0x25; /Iread FRAMCFG2
I/lwhile((FRAMCFG1&0x80)); /Wait FREADIDLE == 1 (FRAM IDLE)
/Ix = FRAMCFG2 /IRead the FRAMCFG2 register
I...)

}/end of Main

www.ramtron.com

page 20 of 114

VRS51L3174

rRAM RSN

2.5 External Data Bus Access

The VRS51L3174 provides external memory bus
access on the upper 32KB block of the 64KB external
memory [8000h to FFFFh]. The VRS51L3174
provides three external data memory bus access
operating modes:

e Multiplexed Data/Address[7:0] external data
memory access

e Non Multiplexed external data memory
access. In this mode only A[14:A8] are
accessible.

e Data Bus Chip Select (DBCS) mode

The external memory address range 0000h to 3FFFh
provides access to a block of 4KB of SRAM memory
on the device. The XMEMXTRL register located at
address D9h controls the operating mode of the
external data memory bus.

TABLE 26: XMEM CoNTROL REGISTER - XMEMCTRL SFR D9+

7 6 5 4 3 2 1 0
RW RW R/W RW R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 EXTBUSCFG | External Memory Bus Configuration

0 = LSB of Address/Data are Multiplexed
1 = LSB of Address/Data are not Multiplexed

6 EXTBUSCS Ext Memory CS Function
0 = Full Address Bit Dedicated to Addressing
1=A12: A15 Becomes CS Lines

5 - Not used
4 - Not Used
3:0 STRETCHI[3:0] Number of Stretch Cycles from 0 to 15

The EXTBUSCFG bit of the XMEMCTRL register
defines the hardware configuration used for external
data memory access.

When the EXTBUSCFG bit is cleared, the external
data memory bus will be accessed like a standard
8051, where the lower eight address and data bit are
time-multiplexed. In that mode, the ALE signal serve
to indicate the output of bus address, especially A[7:0]
which are multiplexed with D[7:0]

Setting the EXTBUSCFG bit to 1 will activate the
access operation of the non-multiplexed external data
memory bus. This new mode is intended to avoid the
use of an external octal D flip-flop device to hold the
LSB of the target address.

The FRAMEN bit controls the activation of the FRAM
memory module. When the FRAMEN bit is set to 1,
the FRAM module will monopolize any XDATA access
(read/write) operations targeting an address >= 8000h.

In order to access the external data memory bus, the
EXTBUSEN bit of the DEVMEMCFG SFR must be set
to 1 and the FRAMEN bit must be set to 0.

Any XDATA memory access with a target address
< 8000h will have no impact on the I/O associated with
the external data memory bus.

From a device connected to the VRS51L3174’s
external memory bus, the address range is seen as
0000 to 7FFFh, as A15 address line is not pinned out.

FIGURE 4: EXTBUSEN AND FRAMEN BIT CONFIGURATION
EXTBUSEN = 1 EXTBUSEN = 1

FRAMEN = 1 FRAMEN =0

(| (A)

FFFFh

\
\
N\
N\
A15=1 N
8KB 9FFFh AN
FRAM 8000h \
N 7FFFh
N\
N\
\
\ A15 =0
\
4KB OFFFh 4KB N
SRAM 0000h SRAM N 0000h
Software Software Hardware
point of view point of view point of view

2.5.1 Multiplexed External Data Memory
Access

The multiplexed external data memory access mode
on the VRS51L3174 is similar to that of a standard
8051: Address bits A7 to A0 and data bits D7 to DO
are time-multiplexed on Port 0 with the ALE pin
synchronizing the output of A[7:0]. Port 2 controls
address bits A14 to A8.

Contrary to standard 8051 devices, the A15 line is not
pinned out on the VRS51L3174. Pin P2.7 1/O, which
corresponds to line A15 line on a standard 8051, will
remain low.

In multiplexed addressing mode, external glue logic is
required to multiplex lower addresses and data.
Typically, a 74x373 or 74x573 can be used for this
purpose.

www.ramtron.com

page 21 of 114

VRS51L3174

rRAM RSN

The ALE-CMO pin serves to latch the lower 8 bits of
the address.

FIGURE 5: MULTIPLEXED EXTERNAL DATA MEMORY ACCESS REPRESENTATION

P2(6:0] A[14:8]
VRS51L3174
PO[7:0] o | A7:0]
N
™
ALE >

D[7:0]

The diagram below shows the timing of the external
data memory bus when configured in multiplexed
mode.

FIGURE 6: MULTIPLEXED EXTERNAL DATA MEMORY ACCESS

MULTIPLEXED WRITE

System Clock

ALE | 4—TADDR —» | 4= TALE —» |
P2 A[14:8] A[14:8]
| %= TaD -»|

PO A[7:0/D[7:0] Al70] D[7:0]

I

| +—— Tom ——|

WR

MULTIPLEXED READ

System Clock

ALE | =—TADDR -~ | =~ TALE - |
P2 A[14:8] Al14:8]
| - TARD - |

PO A[7:0/D[7:0] A7:0] D[7:0]

[

|[+— T —|

RD

Assuming that the system clock operates at 40MHz,
typical cycles for the external memory bus are as
follows:

Parameter Description Typical value for
system clock =
40MHz

Tae ALE High time 25ns

TapbR Time between ADDR[14:8] | 10ns

and ALE rising edge
Tan Time A[7:0] is stable after | 20ns
ALE falling edge

Taro Time between ALE falling | 50ns

edge and RD falling edge

Twr WR signal Low time 50ns

Tro RD signal Low time 50ns

2.5.2 Non-Multiplexed External Data Memory
Access

The VRS51L3174 external address and data memory
bus can operate in non-multiplexed mode. However,
one the VRS51L51L3174 only address lines A[14:8]
are accessible. This mode is activated by setting the
EXTBUSCFG bit of the XMEMCTRL register to 1.

In this case:

o D7:DO0 will be mapped into Port 0
o AT:A0 Not accessible
o A14:A8 will be mapped into Port 2

FIGURE 7: NON-MULTIPLEXED EXTERNAL DATA MEMORY ACCESS REPRESENTATION

P2[6:0] A[14:8]

VRS51L3174
A[7:0] Not
accessible
PO[7:0] D[7:0]

The diagram below shows the timing of the external
data memory bus when configured in non-multiplexed
mode.

FIGURE 8: NON-MULTIPLEXED EXTERNAL DATA MEMORY ACCESS

NON MULTIPLEXED WRITE

ALE

P2 A[14:8] AT14:0] X
| TADAT |
PO D[7:0] D[7:0]
|«-TDWR —|
WR
NON MULTIPLEXED READ | «—— Tom ——|
ALE
P2 A[14:8] A[14:0]
-~ TarD —-
PO D[7:0] D[7:0]
RD

|[+— Two —

www.ramtron.com

page 22 of 114

VRS51L3174

rRAM RSN

Assuming that the system clock operates at 40MHz,
typical cycles for the external memory bus are as
follows:

The value of bits 13 and 12 of the target address will
define the active DBCS line. A11:A0 carries the rest of
the address bits. This is represented at the register
level as follows:

Parameter Description Typical value for
System clock = A15 | A14 | A13 A12 A0
40MHz X X CS1 CSo
Tapat Time between A[14:8] | 15ns . .
stable and data stable As such, when the CS bus control mode is activated,
Taro Time between D[7:0] stable | 20ns the upper 32KB of the external data memory bus is
and WR falling edge seen as two overlapping blocks of 16KB.
Twr WR signal Low time 50ns
Taro Time between A[14:8] 50ns TABLE 28: EXTERNAL MEMORY BUS CS CONTROL MODE
stable and RD falling edge Address range Active as CSBx pin
Tro RD signal Low time 50ns 0000h- 7FFFh None
(4KB SRAM from 0000h to
OFFFh)
. 8000h-8FFFh DBCSO0 (P2.4)
253 Page Addressing of thfe External SRAM 9000h-9FFFh DBCS1 (P2.5)
using the MPAGE Register A00Oh-AFFFh DBCS? (P2.6)

The MPAGE register provides access to the entire
external memory using indirect addressing through
registers RO and R1. The MPAGE register can be
used to hold the upper 8 bit of the target address when
using the MOVX @RI instruction which by definition is
limited to a 256 Bytes range.

TABLE 27: MEMORY PAGE REGISTER - MPAGE SFR F1H

BO0Oh-BFFFh DBCS3 (P2.7)

C000h-CFFFh DBCSO0 (P2.4) Overlap

D0O00h-DFFFh DBCS1 (P2.5) Overlap

E000h-EFFFh DBCS2 (P2.6) Overlap

FOOOh-FFFFh DBCS3 (P2.7) Overlap

7 | 6] 5] 4] 3] 2 [1] o

R/W, Reset = 0x00

MPAGE[7:0] = Upper Address Byte

2.6 External Data Bus CS (DBCS) Control
Lines

In some applications, only a few external memory
addresses are required to perform high speed data
transfers between the microcontroller and peripherals,
such as parallel access data converters. In this case,
only a few address locations on the external data
memory bus have to be accessed. The VRS51L3174
provides a feature that can simplify interfacing to these
peripherals .

Setting the EXTBUSCS bit of the DEVMEMCFG
register to 1 will activate the external bus control lines

External bus CS mode can also work in standard 8051
external data memory buss access mode where tha
A[7:0] and D[7:0] are multiplexed.

When both the EXTBUSCS bit of the XMEMCTRL
register and the EXTBUSGEN bit of the DEVMEMCFG
register are set to 1, the P2[7:4] pins of the
VRS51L3174 will act as an active high chip select pin
named DBCSB[3:0].

Setting the EXTBUSCFG bit of the XMEMCTRL
register has no impact on the operation in external bus
CS mode. The table below summarizes the mapping
and the activity of the 1/0O pins associated with the
external data memory bus when configured in external
bus CS mode.

TABLE 29: PIN MAPPING IN EXTERNAL MEMORY Bus MODE

Signal in Ext. Bus | Mapping / Activity | Mapping / Activity
CS Mode when when
EXTBUSCFG =0 EXTBUSCFG =1
Multiplexed Non-Multiplexed
ALE Active Inactive
DBCS[3:0] P2[7:4] P2[7:4]
Address[11:8] P2[3:0] P2[3:0]
Address[7:0] PO[7:0] A[7:0]
Not accessible
Data[7:0] PO[7:0] PO[7:0]
P6 Available Address[7:0]
as regular I/O
RD Active Active
WR Active Active

www.ramtron.com

page 23 of 114

VRS51L3174

rRAM RSN

Signal timing associated with the external bus mode is
represented below:

FIGURE 9: EXTERNAL DATA MEMORY BuUs IN CHIP SELECT MODE (NON-MULTIPLEXED)

External Data Memory Bus CS Mode Non-Multiplexed with access to:
Address = C204h with data = 5Fh
Address = D301h with data = 66h

ALE

DBCS[3:0] 1h 2h

P2[3:0]-A[11:8] 2h 3h

—»| |-TADAT

PO D[7:0] 5Fh 66h
| |-—Towr
WA | L
| |- Twr

External Data Memory Bus CS Mode Non-Multiplexed with access to:
Address = C204h with data = 5Fh

2.6.1 Slowing down the External Data
Memory Bus Access

The STRETCHI[3:0] bit of the XMEMCTRL register
allows the user to add cycles to the RD and WR
signals. The ALE signal is not affected by the
STRETCHI[3:0] configuration.

For application requiring lower overall bus speed, we
suggest lowering the system clock speed using the
DEVCLKCFG[3:0] register.

The table below shows the impact of STRETCH[3:0]
and the DEVCLKCFG[3:0] on the external data
memory bus access cycle time, assuming the
VRS51L3174 operates from the 40MHz internal
oscillator.

TABLE 31: IMPACT oF DEVCLKCFG & STRETCH[3:0] ON ExT. DATA MEMORY BUS TIMINGS

Address = D301h with data = 66h DEVCLKCFG[3:0] | STRETCH[3:0] | RD/WR | ALE
AL *ﬂ“ [1 0 0 50ns | 25ns
DBCS[3:0] 1h 2h 0 1 75ns 25ns
0 2 100ns | 25ns
P2[3:0]-A[11:8] 2h 3h 0 8 250ns 25ns
- | Tazo 4 0 800ns | 400ns
PO D[7:0] 04h 5Fh 01h 66h 4 8 4uS | 400ns

- | |-Towr
WR |] The STRETCH[3:0] configuration does not affect
| |- Twr

Assuming that the system clock operates at 40MHz,
typical cycles for the external memory bus are as
follows:

TABLE 30: TIMING ASSOCIATED WITH EXTERNAL DATA MEMORY BUS ACCESS

Parameter Description Typical value for
System clock =
40MHz

Tapat Time delay between 15ns

address stable and
Data[7:0] in non-
multiplexed mode

Towr1 Time between Data[7:0] 20ns

stable and WR falling edge
in non-multiplexed mode

Tae ALE High time 25ns

Tappr Time between ADDR[14:8] 15ns

and ALE rising edge

Tarq Time A[7:0] is stable after 50ns

ALE falling edge

Towrz Time between Data[7:0] 20ns

stable and WR falling edge.

Twr WR signal Low time 50ns

access to the 4KB SRAM and the 8KB FRAM.

www.ramtron.com

page 24 of 114

VRS51L3174

rRAM RSN

3 Chip Configuration

3.1 System Clock Configuration

The VRS51L3174 clock system is highly configurable.
The VRS51L3174 includes an internal 40MHz
oscillator, eliminating the need for an external
oscillator or crystal. However, an external standard
parallel AT or BT cut crystal can be used (frequency
range of 4MHz to 40MHz).

Two SFR registers control the configuration of the
clock source and the division ratio applied to the
system clock source. The DEVCLKCFG1 register
selects either the internal oscillator or the external
crystal oscillator as the system clock source. When the
OSCSELECT bit is cleared, the VRS51L3174 system
clock derives its power from the external crystal
oscillator (please see the next section).

TaBLE 32:DEVICE CLOCK CONFIGURATION REGISTER 1 - DEVCLKCFG1 SFR F2H

7 6 5 4 3 2 1 0
R/W R/W RW RW RW RW R/W RW
0 1 1 0 0 0 0 0

Bit Mnemonic Description
7 SOFTRESET Soft reset control bit
6 OSCSELECT Oscillator Select

0 = External oscillator is selected
1 = Internal oscillator is selected

5 CLKDIVEN Internal oscillator output clock divisor enable bit
0 = Disable Clock Divisor

1 = Enable Clock Division

4 FULLSPDINT Full Speed Interrupt Mode

0 =Processor will run with selected clock
division during interrupts

1 = Processor will run at full speed during
interrupts

3:0 CLKDIV[3:0] CLKDIV Value/Clock Division
0=n
1=1/2
2=/4
3=/8
4=/16
5=/32

6 =/64
7=/128

8 = /256
9=/512
A=/1024
B =/2048
C =/4096
D =/8192
E =/16384
F= /32768

Soft Reset Operation

A software reset can be performed on the
VRS51L3174. This is executed via two consecutive
instruction: The first instruction is to clear the
SOFTRESET bit and the second is to set
SOFTRESET bit to 1.

Examples of soft Reset in ASM:

ANL DEVCLKCFG #7Fh;
ORL DEVCLKCFG,#80h;

InC:

DEVCLKCFG &= 0x7F;
DEVCLKCFG |= 0x80;

When using a C compiler verify the compiler does
convert the abovementioned instructions on two
consecutive instructions performing a write into the
DEVCLKCFG register.

The DEVCLKCFG2 register activates the on-chip
oscillator and the crystal oscillator. Both oscillators can
be activated independently, however, as previously
mentioned, only one can be used as the VRS51L3174
system clock source.

TABLE 33:DEvICE CLOCK CONFIGURATION REGISTER 2 - DEVCLKCFG2 SFR F3H

7 6 5 4 3 2 1 0
RW RW R R RW RW RIW R
0 1 0 0 1 0 0 1
Bit Mnemonic Description
7 CYOSCEN Crystal Oscillator Enable

0 = Crystal oscillator is disabled (default)
1 = Crystal oscillator is enabled

6 INTOSCEN Internal Oscillator Enable
0 = Internal oscillator is disabled
1 = Internal oscillator is enabled (default)
5 Reserved
4 Reserved
3:2 CYRANGE[1:0] Crystal Oscillator Range
00 = 25MHz — 40MHz
01 = 4MHz to 25MHz
10 = 32kHz to 100KHz
11 = 32kHz to 100KHz
1 Reserved
0 Reserved Always read as 1

The crystal oscillator is activated by setting the
CYOSCEN bit of the DEVCLKCFG2 register to 1 and
selecting the CYRANGE value according to the
frequency of the crystal used. The CYRANGE
parameter controls the drive of the crystal oscillator
circuit.

The internal oscillator is activated by setting the
INTOSEN bit to 1.

Before switching from one oscillator source to another,
it is important to make sure that both oscillators are
active and stable at the moment the transition is made.
The minimum period required for the crystal oscillator
to stabilize depends on the type of crystal and the
frequency used. In general, it is recommended to wait
at least 1ms for the crystal oscillator to stabilize before
switching to it.

The stabilization time of the internal oscillator is much
shorter than that of the crystal oscillator. Whenever the
internal oscillator is reactivated, wait >2uS before
switching the system clock back to the internal
oscillator.

www.ramtron.com

page 25 of 114

VRS51L3174

rRAM RSN

3.1.1 Switching from the Internal to the
External Oscillator

The following steps represent the recommended
procedure for switching from the internal oscillator to
the crystal oscillator:

FIGURE 10: SWITCHING FROM INTERNAL OSCILLATOR TO EXTERNAL OSCILLATOR

Switching from
Internal to External
Oscillator

Activate Crystal
Oscillator

Code E le: Internal to Ext

DEVCLKCFG2 = 0xC4; //Enable the external oscillator:
Wait for /IRange 4 to 25MHz and KEEP
o /lthe internal oscillator active
Stabilization delay(1); //Stabilization time
| DEVCLKCFG1 &= 0xBF; /ISelect external oscillator
DEVCLKCFG2 &= 0xBF; /IDeactivate the internal oscillatc

Switch System
Operation to
Crystal Oscillator

Turn OFF the
Internal Oscillator

It is important to allow the crystal oscillator to stabilize
before using it as the system clock. An instable
oscillator may result in an operating frequency error or
device volatility .

3.1.2 Switching from the External Oscillator
Back to the Internal Oscillator

It is possible to switch system clock source to the
internal oscillator while the device is running from the
external oscillator. Note that before switching the
internal oscillator, it must be active.

The following the sequence below is recommended in
order to switch from the crystal oscillator back to the
internal oscillator:

FIGURE 11: SWITCHING FROM EXTERNAL OSCILLATOR TO INTERNAL OSCILLATOR

Switching from
External to Internal

Oscillator
/[Enable the internal oscillator:

Activate Internal
Oscillator
/land KEEP the external oscillatc

Wait for Ilactive
Stabilization (2uS)| delay(); /IStabilization time (>2uS)
DEVCLKCFG1 |= 0x40; //Select internal oscillator
| delay(); //Stabilization time (facultative)
Switch system DEVCLKCFG2 &= 0x7F; /IDeactivate the external oscillatc

Operation to
Internal Oscillator

Turn OFF the
External Oscillator

Code E: le: External to |

DEVCLKCFG2 |= 0x40;

3.1.3 System Clock Prescaler

Between the internal and the external oscillator
modules and the main system clock tree, the
VRS51L3174 includes a clock prescaler module
enabling a dynamic division adjustment of the system
clock frequency from FOSC /1 to FOSC/32768. This
feature can be useful for saving power in battery-
operated applications, in which the device clock speed
can be adjusted to suit the processing power
requirements.

After a reset, the VRS51L3174 will boot up from the
internal oscillator and the selected operating speed will
be set to 20MHz i.e.. CLKDIVEN is set to 1 and the
CLKDIV value is 1 (CLK = Fosc/2). Clearing the
CLKDIVEN bit will deactivate the main clock prescaler.

3.1.4 Interrupt Processing Speed
Configuration

The VRS51L3174 includes a feature that allows
interrupts to be processed at full speed, while the main
program executes at a lower speed, as defined by the
FULLSPDINT value when the CLKDIVEN bit is set to
1.This mode of operation can be useful for applications
where high processing power is required for short
periods of time. Significant power saving can be
achieved by dynamically adjusting the system clock
frequency according to the processing power required.

www.ramtron.com

page 26 of 114

VRS51L3174

rRAM RSN

Switching from Internal to External Oscillator Example

Program

/.

/IVRS51L3174_Int_to_ext_to_Int_osc_switching_test2-SDCC.c
/.

I

/ DESCRIPTION:

A Test switching from internal osc to the external oscillator
A then back to the internal oscillator...forever

I 1) The program start from the internal oscillator with
" duty = 50/ 50 for 100 cycles

" 2) Then it switch to external oscillator with a

/A duty of 50/20for 100 cycles

I 3) It then switch to internal oscillator

" 4) then it execute 100 cycles with a

" duty of 20/50 for 100 cycles

/A 5) Return to step 2

//. /

#include <VRS51L3174_SDCC.h>
/I - function prototypes

void delay(unsigned int);

I I

11 MAIN FUNCTION "

//. /

void main (void)

int cptr ;
PERIPHEN1 = 0x01;
PERIPHEN2 = 0x08;
P2PINCFG = 0x00;

//Enable Timer 0
/I[Enable IOPORT
/IConfig port 2 as output (for Tests)

for(cptr =0; cptr < 100; cptr++) //toggle P2 100 times

P2 = OxFF;
delay(50);

P2 = 0x00;
delay(50);

%

dof
/I-- Enable the external oscillator

DEVCLKCFG2 = 0xCO0; //Enable the external oscillator,
//Keep external osc active
/[Crystal range = 1 to 20MHz

delay(10); //Stabilization Time
DEVCLKCFG1 = 0x20; //Select External oscillator
delay(1); //Stabilization Time
DEVCLKCFG2 = 0x83; //Keep the external oscillator,

//Disable internal osc active
for(cptr =0; cptr < 100; cptr++) //toggle P2 100 times

P2 = OxFF;
delay(50);

P2 = 0x00;
delay(20);

%

/I-- Return to the internal oscillator

DEVCLKCFG2 = 0xCO; /IKeep the external oscillator enabled
//Activate the internal osc
//Crystal range = 1 to 20MHz

delay(100); // Stabilization Time (way too much)
DEVCLKCFG1 = 0x60; //Select Internal oscillator
delay(1); 1/ Stabilization Time

DEVCLKCFG2 = 0x40; //Disable the external oscillator,
//Keep internal osc active

for(cptr =0; cptr < 100; cptr++) //toggle P2 100 times
P2 = OxFF;
delay(20);
P2 = 0x00;
delay(50);
h
while(1);

Y/ End of mai006E

1

ffe-eee= INDIVIDUALS FUNCTIONS --eceememmees I

//.

11;

/I;- DELAY1MSTO : 1MS DELAY USING TIMERO

/I; CALIBRATED FOR 40MHZ

I1;

void delay(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

x = PERIPHEN1;
x |= 0x01;
PERIPHEN1 = x;
dlaisloop = dlais;
while (dlaisloop > 0)

{
THO = 0x63;
TLO = 0xCO;

TOT1CLKCFG = 0x00;
TOCON = 0x04;
do{
x=TOCON;
x=x & 0x80;
Ywhile(x==0);
TOCON = 0x00;

dlaisloop = dlaisloop-1;

Y/end of while dlais...

x = PERIPHEN1;

x = x & OxFE;

PERIPHEN1 = x;
}/End of function delais

/ILOAD PERIPHEN1 REG
//ENABLE TIMER 0

/ITIMERO RELOAD VALUE FOR 1MS AT 40MHZ

/INO PRESCALER FOR TIMER 0 CLOCK
/ISTART TIMER 0, COUNT UP

//Stop Timer 0

/ILOAD PERIPHEN1 REG
/IDISABLEBLE TIMER 0

www.ramtron.com

page 27 of 114

VRS51L3174

rRAM RSN

3.2 Processor Mode Control Register

The VRS51L3174 provides two power saving modes:
Idle and power-down, which are controlled by the
PDOWN and IDLE bits of the PCON register at
address 87h.

TABLE 34:POWER CONTRO L REGISTER - PCON SFR 87H

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
0 1 1 0 0 0 0 0
Bit Mnemonic Description
7 OSCSTOP Oscillator Stop Control

When this bit is set to 1, the VRS51L3174
oscillator stops. A reset pulse or a power-on
reset is required to restart the device

6 INTMODEN Interrupt Module Enable
0 = Interrupt module is disabled

1 = Interrupt module is enabled (default)

5 DEVCFGEN Device Configuration Module Enable
0 = Device configuration module is disabled
1 = Device configuration module is enabled

4 SFRINDADR SFR Indirect Addressing Enable

0 = NOP instruction A5h behaves normally

1 = NOP instruction A5h acts as a SFR indirect
addressing instruction

3 GF1 General Purpose Flag

2 GFO General Purpose Flag

1 PDOWN Power-Down Mode Enable
When this bit is set to 1, the processor goes into
power-down mode. A reset is required to exit
power-down mode

0 IDLE Idle Mode Enable

When this bit is set to 1, the processor goes into
power-idle mode. A reset or an interrupt is
required to exit idle mode

3.21 Oscillator Stop Mode

The oscillator stop mode goes one step further than
the PDOWN mode. When the OSCSTOP bit is set, all
the oscillators are stopped, achieving maximum power
saving, while maintaining the I/Os in their current state.
Note that in this mode, the watchdog timer will stop
functioning.

In order to stop the oscillator of the VRS51L3174,
clear the OSCSTOP bit of the PCON register and then
immediately set it to 1, as shown below:

PCON &= Ox7F
PCON |= 0x80

3.2.2 SFRIndirect Addressing Capability

The SFR registers on the VRS51L3174 can be
accessed via indirect addressing. This is accomplished
by setting the SFRINDADR bit of the PCON register.

When SFRINDADR is set, the A5h instruction
functions as an SFR indirect addressing instruction
(the default at reset is the NOP instruction).

3.2.3 PDOWN and IDLE Power Saving Mode

In idle mode, the processor clock is stopped, however
the peripherals remain active. The contents of the
SRAM, the state of the I/Os and the SFR registers are
maintained, as are the timer, external interrupt and
UART operations. Idle mode is useful for applications
in which stopping the processor to save power is
required. The processor will be activated when an
external event, triggering an interrupt, occurs.

In power-down mode, the VRS51L3174 oscillator is
stopped. While the clock to all the peripherals is
deactivated, the contents of the SRAM and the SFR
registers is maintained. The only way to exit power-
down mode is via a hardware reset.

In power-down and idle modes the watchdog timer
continues to function.

www.ramtron.com

page 28 of 114

VRS51L3174

rRAM RSN

3.3 Peripherals Enable Register

The VRS51L3174 peripherals can be individually
activated. The PERIPHEN1 and PERIPHEN2 registers
are used for this purpose.

With the exception of the /O ports, all the
VRS51L3174 peripherals and communication
interfaces are in the disable state upon reset. When a
given peripheral is inactive, read and write operations
to its SFR registers will have no effect. To activate a
given peripheral, the corresponding enable bit in the
PERIPHENX registers must be set to 1.

The PERIPHEN1 register controls the activation of the:

TABLE 36: PERIPHERA2 ENABLE REGISTER 2 - PERIPHEN2 SFR F5H

7

6 5

4 3 2 1 0

R/W

R/W R/W

R/W R/W R/W R/W R/W

0

0 0

0 1 0 0 0

Bit

Mnemonic

Description

PWC1EN

Pulse Width Counter 1 Enable
0 =PWCH1 is off
1=PWC1ison

PWCOEN

Pulse Width Counter 0 Enable
0 = PWCO is off
1=PWCO s on

AUEN

Arithmetic Unit Enable
0 = Arithmetic unit is off
1 = Arithmetic unit is on

XRAM2CODE

When set to 1, the 4KB block of SRAM is
mapped into the program code area from 0000h
to OFFFh.

XRAM-based variable are not permitted when
the processor is running from the XRAM.

The XRAM2CODE bit must be set and cleared
only when the program counter is outside the
abovementioned address range.

IOPORTEN

1/0O Port Enable
0 = 1/O Ports are deactivated
1 =1/0 Ports are activated

WDTEN

Watchdog Timer Module Enable
0=WDT is OFF
1=WDT is ON

PWRSFREN

Pulse Width Modulators SFR Enable
0 = SFR associated with PWMs are deactivated
1 = SFR associated with PWMs are activated

e SPl Interface
e |2C Interface
¢ Two UARTs
e Timers
TABLE 35: PERIPHERAL ENABLE REGISTER 1 - PERIPHEN1 SFR F4H
7 6 5 4 3 2 1 0
R/W R/W RW RW RW RW R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 SPICSEN Enable SPI CS Line
0 = SPI CS lines are disabled (accessible as
1/0)
1 = SPI CS lines are enabled and reserved by
SPl interface
6 SPIEN SPI Interface Enable
0 = SPI interface is disabled
1 = SPl interface is enabled
5 12CEN I2C Interface Enable
0 = I?C interface is disabled
1 = I’C interface is enabled
4 U1EN UART1 Interface Enable
0 = UART1 interface is disabled
1 = UART1 interface is enabled
3 UOEN UARTO Interface Enable
0 = UARTO interface is disabled
1 = UARTO interface is enabled
2 T2EN Timer2 Enable
0 = Timer 2 interface is disabled
1 = Timer 2 Interface is enabled
1 T1EN Timer1 Enable
0 = Timer 1 interface is disabled
1 = Timer 1 interface is enabled
0 TOEN Timer0 Enable
0 = Timer 0O interface is disabled
1 = Timer 0 interface is enabled

The PERIPHENZ register controls the activation of the:

Pulse Width Counter Modules
Arithmetic Unit

I/0 Ports

Watchdog Timer

FPI Interface

It also activates the XRAM into code mode, in which
the processor starts executing code from the 4KB
block of externally mapped SRAM memory.

FPIEN

FPI Interface Enable
0 = FPl interface is disabled
1 = FPl interface is enabled

www.ramtron.com

page 29 of 114

VRS51L3174

rRAM RSN

3.4 Peripheral /0 Mapping and Priority

The pin locations of the following peripherals can be
remapped to alternate pin positions:

o Timer 2 Output
o I*C
o UARTO

This feature has been included to provide access to all
peripherals. The following table lists the peripherals
whose I/O positions are configurable:

TABLE 37:PERIPHERAL ALTERNATE PIN CONFIGURATION

Peripheral | Default | Alternate
Pin Pin
T20UT P1.2 P4.4
SCL P3.4 P1.6
SDA P3.5 P1.7
RXDO P3.0 P2.4
TXDO P3.1 P2.3

When the SPI interface is enabled, the SPI CSO line is
reserved for the SPI interface, independent of the state
of the SPICSEN bit.

UART1 has priority over the SPICSEN bit of the
PERIPHEN1 register. As such, even if the SPI CS1,
CS2 and CS3 lines are activated by setting the
SPICSEN bit to 1, when UART1 is used, it will override
CS2 and CS3.

Additionally, when activated, the SPI interface, has
priority over the Timer 2 input, even if Timer 2 is
enabled.

4 Input/Output Ports

The VRS51L3174 includes 40 1/O pins grouped into
five ports.

To offer the maximum number of I/O pins, the
VRS51L3174 uses pins typically reserved for external
program memory access as /O interface pins. In
addition, when the internal oscillator is enabled, the
crystal oscillator pins can be used as regular I/Os.

All the VRS51L3174 1/Os are 5V-tolerant, except for
P4.6 and P4.7, which can endure a maximum input
voltage of VDD+0.5V.

4.1 Structure of the 1/0 Ports

All /O ports on the VRS51L3174 have the same
structure. Their main difference resides in the drive
capability of the 1/0O ports, as shown in the following
diagram:

FIGURE 12: GENERAL STRUCTURE OF THE VRS51L3174 |/Os

’17 When I/O is
J:‘ configured as
Input it will be
pulled up at
T_{ 2.5V instead of
3.3V
INPUT

OUTPUT 1{

T~ Provide 5V
Toltrance

When the 1/O ports are configured as inputs, the pin is
pulled high to a voltage of about 2.50V, instead of the
device voltage, which is 3.3V. An external pull-up
resistor can be added to pull the I/O pin up to 3.3 volts
or to 5 volts.

www.ramtron.com

page 30 of 114

VRS51L3174

rRAM RSN

4.2 Direction Configuration Registers for
the 1/0 Ports

Each 1/O port on the VRS51L3174 has dedicated SFR
registers for read/write operations and for /O pin
direction. The pin direction configuration registers
allow the user to configure the direction of each
individual I/O pin. Writing a 1 to these register bit
positions configures the corresponding I/O port as an
input. To configure an /O pin as an output, the
corresponding bit in the pin direction configuration
register must be cleared.

Because the pin direction configuration registers are
not located at addresses that are multiples of xOh or
x8h, they are not bit-addressable. When a peripheral is
activated, it takes control of the 1/0O pins and the 1/O
pin direction is configured automatically.

The user can monitor the activity of any peripheral
module input pin current state by configuring the
corresponding 1/O pin as an input and reading the port
pin value.

TABLE 38:PORT 0 PIN DIRECTION CONFIGURATION REGISTER - POPINCFG -SFR F9H

TABLE 40:PORT 2 PIN DIRECTION CONFIGURATION REGISTER - P2PINCFG -SFR FBH

7 6 5 4 3 2 1 0
RIW RW RIW RIW RIW RIW RIW RIW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 P27IN10OUTO When:

1 =1/0 pin acts as a input (reset value)
0 =1/0 pin act as a output

P26IN1OUTO Same as bit 7

P25IN10OUTO Same as bit 7

P24IN10OUTO Same as bit 7

P23IN1OUTO Same as bit 7

P22IN10OUTO Same as bit 7

P21IN1OUTO Same as bit 7

o= [(N|w|A~lo|O

P20IN1OUTO | Same as bit 7

7 6 5 4 3 2 1 0
RIW RIW RW RIW RW RW RW RW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 PO7IN1OUTO | When:

1 =1/0 pin acts as a input (reset value)
0 = 1/O pin acts as a output

POGIN1OUTO | Same as bit 7

PO5IN1OUTO Same as bit 7

PO4IN1OUTO | Same as bit 7

PO3IN1OUTO Same as bit 7

P02IN1OUTO Same as bit 7

P0O1IN10OUTO Same as bit 7

o= [N|[w|~ ;|

POOIN1OUTO Same as bit 7

When the external data memory bus access is
activated, Port 0 functions as D7:D0 and/or address
AT7:A0.

TABLE 39:PORT 1 PIN DIRECTION CONFIGURATION REGISTER - P1PINCFG -SFR FAH

7 6 5 4 3 2 1 0
RW RW RW RW RW RW R/W RW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 P17IN1OUTO 1 =1/0 pin act as a input (reset value)
0 =1/O pin act as a output
6 P16IN1OUTO | Same as bit 7
5 P15IN1OUTO Same as bit 7
4 P14IN1OUTO | Same as bit 7
3 P13IN1OUTO | Same as bit 7
2 P12IN1OUTO | Same as bit 7
1 P11IN1OUTO | Same as bit 7
0 P10IN1OUTO | Same as bit 7

When the external data memory bus is activated,
except when in external bus CS mode, Port 2
functions as address bus bits A15:A8.

TABLE 41:PORT 3 PIN DIRECTION CONFIGURATION REGISTER - P3PINCFG -SFR FcH

7 6 5 4 3 2 1 0
RIW RW RIW RIW RIW RIW RIW RIW
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 P37IN10OUTO When:

1 =1/0 pin act as a input (reset value)
0 =1/0 pin act as a output
P36IN1OUTO Same as bit 7

P35IN1OUTO Same as bit 7

P34IN1OUTO | Same as bit 7

P33IN1OUTO Same as bit 7

P32IN1OUTO Same as bit 7

P31IN1OUTO | Same as bit 7

P30IN1OUTO | Same as bit 7

o= [(N|w|A~|lo|O

When the external data memory bus is activated, P3.6
and P3.7 function as WR and RD.

TABLE 42:PORT 4 PIN DIRECTION CONFIGURATION REGISTER - P4PINCFG -SFR FDH

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7 P47IN1OUTO When:

1 =1/0 pin acts as a input (reset value)
0 =1/0O pin acts as a output
P46IN1OUTO | Same as bit 7

P45IN10OUTO Same as bit 7

P44IN1OUTO | Same as bit 7

P43IN1OUTO Same as bit 7
P42IN10OUTO Same as bit 7

P41IN1OUTO Same as bit 7

o= [(N|w|A~ (oo

P40IN1OUTO Same as bit 7

www.ramtron.com

page 31 of 114

VRS51L3174 rRAMTRSON

4.3 1/0 Ports Input Enable Register

Upon reset, all the VRS51L3174 1/0Os are configured
as inputs and the input control logic of all ports is
activated. A given /O port's input logic can be
deactivated by clearing the corresponding bit in the
PORTINEN register.

TABLE 43:PORTS INPUT ENABLE REGISTER - PORTINEN SFR F7H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W RW R/W
1 1 1 1 1 1 1 1

Bit Mnemonic Description

7 Reserved (0) Keep this bit at 0

6 Reserved

5 Reserved

4 P4INPUTEN Port 4 Input Enable Register

0 = Port 4 input logic is deactivated
1 = Port 4 input logic is activated

3 P3INPUTEN Port 3 Input Enable Register

0 = Port 3 input logic is deactivated
1 = Port 3 input logic is activated

2 P2INPUTEN Port 2 Input Enable Register

0 = Port 2 input logic is deactivated
1 = Port 2 input logic is activated

1 P1INPUTEN Port 1 Input Enable Register

0 = Port 1 input logic is deactivated
1 = Port 1 input logic is activated

0 POINPUTEN Port 0 Input Enable Register

0 = Port 0 input logic is deactivated
1 = Port 0 input logic is activated

4.4 1/O Ports SFR Registers

As is the case for standard 8051 devices, the I/O ports
on the VRS51L3174 are mapped into SFR registers
that are bit-addressable. At reset, the I/O ports are
activated and configured as inputs.

The VRS51L3174 1/O output drivers, unlike the original
standard 8051 1/O output drivers, are of the push-pull
type. The VRS51L3174 1/Os have the same output
drive capability whether they are driving a logic high or
a logic low, versus the standard 8051s, which feature
an active low driver with a pull-up resistor.

From a software point of view, the difference is that
whenever the configuration of a given I/O has to be
changed, the corresponding bit in the port direction
configuration register must be set accordingly.

www.ramtron.com page 32 of 114

VRS51L3174

rRAM RSN

The following tables describe the SFR registers
associated with the VRS51L3174 1/O ports.
TABLE 44:PORT 0 REGISTER - PO SFR 80H
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 PO[7 :0] Port 0
TABLE 45:PORT 1 REGISTER - P1 SFR 90H
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P1[7 :0] Port 1
TABLE 46:PORT 2 REGISTER - P2 SFR AOH
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P2[7 :0] Port 2
TABLE 47:PORT 3 REGISTER - PO SFR BOH
7 6 5 4 3 2 1 0
R/W RW R/W R/W R/W R/W R/W R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P3[7 :0] Port 3
TABLE 48:PORT 4 REGISTER - P4 SFR COH
7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
1 1 1 1 1 1 1 1
Bit Mnemonic Description
7:0 P4[7 :0] Port 4

4.5 1/O Port Drive Capability

The current drive capability of the VRS51L3174 1/O
ports is not the same for all ports. Most can drive 2mA
and others can drive more in either current source or
current sink and can be used for direct LED drive. The
following table summarizes the VRS51L3174 1/O port
drive capabilities:

TABLE 49:1/0 PORTS DRIVING CAPABILITY

1/10 Port Max Current on
Individual Pin
Port 0[7:0] 2mA
Port 1[7:5] 4mA
Port 1[4:0] 2mA
Port 2[7:0] 8mA
Port 3[7:6] 2mA
Port 3[5:4] 4mA
Port 3[3:0] 2mA
Port 4[7:0] 2mA

It is not recommended to exceed the sink current
specified in the table above. Doing so will likely cause
the low-level output voltage to exceed device
specifications and affect device reliability.

For the current revision of the VRS51L3174, the total
DC load on the I/O ports should not exceed 100mA.

www.ramtron.com

page 33 of 114

VRS51L3174

rRAM RSN

4.6 Port Software Specifics

Some instructions allow the user to read the logic state
of the output pin, while others allow the user to read
the contents of the associated port register. These
instructions are called read-modify-write instructions. A
list of these instructions may be found in the following
table.

Upon executing these instructions, the content of the
port register (at least 1 bit) is modified. The other read
instructions take the present state of the input into
account. For example, instruction ANL P3,#01h
obtains the value in the P3 register; performs the
desired logic operation with the constant 01h and
recopies the result into the P3 register.

In order to monitor the present state of the inputs of an
I/O port bit, first, read the port, and second, perform an
AND or an OR operation, as required by the program:

MOV A, P3; State of the inputs in the accumulator
ANL A, #01; AND operation between P3 and 01h

When the port is used as an output, the register
contains information on the state of the output pins.
Measuring the state of an output directly on the pin is
inaccurate because the voltage level depends mostly
on the type of charge that is applied to it. The functions
below perform the operation on the value of the port
register rather than the actual port pin itself.

TABLE 50: LIST OF INSTRUCTIONS THAT READ AND MoDIFY THE PORT USING REGISTER
VALUES

Instruction | Function

ANL Logical AND ex: ANL PO, A

ORL Logical OR ex: ORL P2, #01110000B

XRL Exclusive OR ex: XRL P1, A

JBC Jump if the bit of the port is setto 0

CPL Complement 1 bit of the port

INC Increment the port register by 1

DEC Decrement the port register by 1

DJNZ Decrement by 1 and jump if the result is not
equalto 0

MOV P.,C Copy the held bit C to the port

CLR* P.x Set the port bit to 0

SETB P.x Set the port bit to 1

*Note: Even though the CPU does not read in this
case, it is considered a read-modify-write instruction.
In MOV dir, dir has an extra cycle when doing an SFR
read during a debugger interrupt. The debugger
memory is synchronous and is mapped into the SFR
bus and, therefore, requires an extra read cycle.

Instruction A5, which is considered an NOP in a
standard 8051, has been redefined to perform write
and read SFR indirect addressing. Therefore, during a
debugger interrupt, the A5 indirect read SFR
addressing requires an extra cycle.

4.7 1/0 Port Example Programs

471 1/O Ports Toggle Example

This program shows the activation and configuration of
ports PO to P4 as outputs. The program continuously
toggles their values.

;" VRS51L3174 1/0O Ports Toggle Example *

START:MOV PERIPHEN2,#08H ;ENABLE IO

MOV POPINCFG,#00H ;CONFIGURE P0 AS OUTPUT
MOV P1PINCFG,#00H ;CONFIGURE P1 AS OUTPUT
MOV P2PINCFG,#00H ;CONFIGURE P2 AS OUTPUT
MOV P3PINCFG,#00H ;CONFIGURE P3 AS OUTPUT
MOV P4PINCFG,#00H ;CONFIGURE P4 AS OUTPUT

MOV PERIPHEN2,#00001000B ;BIT7 - PWC1EN
;BIT6 - PWCOEN
;BITS - AUEN
;BIT4 - XRAM2CODE
;BIT3 - IOPORTEN
;BIT2 - WDTEN
;BIT1 - PWMSFREN
;BITO - FPIEN

//'1/0 Output Toggle Loop

LOOP:
MOV PO,#00H ;FORCE PO = 00H
MOV P1,#00H ;FORCE P1 = 00H
MOV P2#00H ;FORCE P2 = 00H
MOV P3,#00H ;FORCE P3 = 00H
MOV P4,#00H ;FORCE P4 = 00H
MOV A #100 ;Wait 100ms using Timer 0

ACALL DELAY1MSTO ;See Timer section

MOV PO #OFFH ;FORCE PO = FFH
MOV P1#OFFH ;FORCE P1 = FFH

MOV P2 #0FFH ;FORCE P2 = FFH

MOV P3,#OFFH ;FORCE P3 = FFH

MOV P4 #OFFH ;FORC E P4 = FFH

MOV A #100 ;Wait 100ms using TimerQ
ACALL DELAY1MSTO ;See Timer Section

LJMP LOOP

The DELAY1MS function is described in the timers
section.

www.ramtron.com

page 34 of 114

VRS51L3174

rRAM RSN

4.7.2 1/O Port Read Example

;* VRS51L3174 1/O Ports Read and Write Example

i’ORTREAD EQU021H ;GENREAL VARIABLE
START:MOV PERIPHEN2,#08H ;ENABLE IO

MOV POPINCFG,#00H ;CONFIGURE PO AS iNTPUT
MOV P1PINCFG,#00H ;CONFIGURE P2 AS OUTPUT

; Note that the port Input logic is activated by default

MOV PERIPHEN2,#00001000B ;BIT7 - PWC1EN
;BIT6 - PWCOEN
;BIT5 - AUEN
;BIT4 - XRAM2CODE
;BIT3 - IOPORTEN
;BIT2 - WDTEN
;BIT1 - PWMSFREN
;BITO - FPIEN

;*** Read Port 0 and copy the value to P2
LOOP:

MOV PORTREAD, PO ;Read Prt 0 and store the value in a Variable
MOV P2, PORTREAD ;Write the Variable content to P2

AJMP LOOP

In this example, the Port PO value is stored in a
variable before writing it to P2, but the user can also
directly transfer PO to P2 in one operation:

LOOP:
MOV P2,PO ;would do the same operation more efficiently
AJMP LOOP

4.8 Port Pin Change Monitoring

The VRS51L3174 includes an /O port pin change
monitoring subsystem. This module is used to monitor
the activity on the selected 1/O ports.

When enabled, if a pin state changes on the selected
I/O port, the PMONFLAG will be set to 1 by the
system. It must be cleared manually by the software.

The port pin change monitoring feature is very useful
for monitoring events that can occur on a given group
of 1/0s without having to constantly read the I/O state.
Since it is connected to the VRS51L3174 interrupt
subsystem, the port pin change monitoring system
frees the processor resources for other tasks.

TABLE 51:PORT CHANGE MONITORING REGISTER - PORTCHG SFR B9H

7 6 5 4 3 2 1 0
RW RW RW RW RW R/W R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 PMONFLAG1 Port Change Monitoring Flag1
When set, monitored port state has changed
6 PCHGMSK1 Port Change Mask Register 1

0 = Port monitoring is deactivated
1 = Port monitoring is activated

5:4 PCHGSEL1[1:0] | Port Change Monitoring Register Select 1
00 = Reserved

01 = Reserved

10 = Reserved

11 = P4[3:0] Change is monitored

3 PMONFLAGO | Port Change Monitoring Flag 0
When set, monitored port state has changed
1 PCHGMSKO Port Change Mask Register 0

0 = Port monitoring is deactivated
1 = Port monitoring is activated

1:0 PCHGSELO[1:0] | Port Change Monitoring Register Select 0
00 = PO Change is monitored
01 = P1 Change is monitored
10 = P2 Change is monitored
11 = P3 Change is monitored

The port pin change monitoring flags, PMONFLAGX,
are active at all times, even if the port change masks
are not activated. The PCHGMSKx bits serve to
connect the port change module to the VRS51L3174
interrupt system. The port change monitoring flags
must be cleared manually.

www.ramtron.com

page 35 of 114

VRS51L3174

rRAM RSN

4.9 Port Pin Change Interrupt Example
Programs

49.1 Numeric Keypad Interface

//. /]

/I VRS51L3174_KeypadPO_LCDP1.c /
/].

/i
// DESCRIPTION: Character LCD and Numeric Keypad Interface Example Program.

A This program initialize and sends LCD strings and numeric values

I to a character based LCD display.

" The program also demonstrate the use of the Port Change interrupt

" Feature of the VRS51L3174 to simplify the interface with a numeric Keypad
" on Port 0.

" The numeric keypad is a standard phone keypad which to connected to Port 0
" as shown below:

4 Column 3 - P0.7

" Column 2 - P0.6

" Column 1 - P0.5

" Row 4 -P0.3

4 Row 3 -P0.2

I Row 2 -PO0.1

/i Row 1 -P0.0

"

I No external pull-up / pull down resistors are required, thank to the

I presence of internal pull-up on the VRS51L3174 I/O ports.

"

" The interface to the LCD done through the VRS51L3174 Port 1.

I The LCD is initialized to operate in 4 bit data Bus Mode

"

" LCD interface structure:

"

4 P1.0 = LCDRS

/i P11 = LCDRW

" P12 = LCDE

" P13 = (notused)

I P1[7:4] = LCD Data (4 bit mode)

I

" Notes about standard Character LCD display interface to the VRS51L3174
" -Most LCD displays operates on a 4.5V to 5.5V Supply.

A They won't work with the 3.3V supply the VRS51L3174 operate from

I -On the digital side make sure the LCD module logic High level lower limit
" is below 3V.

" -The VRS51L3174 I/Os are 5V tolerant, so there is no need to add interface
4 circuit between the LCD module's /0 and the VRS51L3174 /O

//. /]

#include <VRS51L3174_SDCC.h>

/I--LCD I/O definition
#define LCDPORT P1
#define LCDPORTDIR P1PINCFG

//--Keypad 1/O definition
#define KEYPADPORT PO
#define KEYPADPORTDIR POPINCFG

//--Keypad Function prototypes
char KeyDecode();
void KeyDisplay(char);

//---LCD Function prototypes
void lcdbusy(void);

void initlcd(void);

void LCDSlow(void);

void int2lcd(unsigned int);

//ILCD Busy check

/ILCD |nitialisation function

//Slow Down communication with LCD display
/lInteger to LCD display function

void lcdstring(char code *); //String to LCD display function

void sendlcdchar(char); /[Char to LCD Display function

void sendlcdcmd(unsigned char); //ISend LCD Command Function

/I---Generic Functions prototype

void V2KDelay1ms(unsigned int); //Standard Delay function

/I LCD bit variables

bit at 0x92 LCD_E; /ILCD E Line
bit at 0x90 LCD_RS; /ILCD RS
bit at 0x91 LCD_RW; /ILCD RW

/I Global variables definitions
idata unsigned char cptr = 0x00;

/I LCD Strings and constants definitions
code char msg1[]= "VRS51L3174 \0";
code char msg2[]= "Waiting for Key.\0";
code char msgkey[]= "Last key: \0";

code char LCD_L1C1 = 0x80;
code char LCD_L2C1 = 0xCO;

/ICommand LCD set CGRAM addr to Line1,column 1
//Command LCD set CGRAM addr to Line2,column 1

code char LCD_L2C10 = 0xC9; //Command LCD set CGRAM addr to Line2,column
10

code char LCD_CLEAR = 0x01; //Command LCD Clear and return cursor home

,// //
" MAIN FUNCTION

//. //

void main (void) {

PERIPHEN1 = 0x01;
LCDPORTDIR = 0x00;

/[Enable Timer 0
//Config LCD port as output

//--Configure Keypad Port and port Change monitor

KEYPADPORTDIR = 0x0F; /IKeypadPort bit 3:0 -> configured as Input (Lines)
//KeypadPort bit 7:5->Configured as output (Columns)
/IClear the Columns driver outputs

//Put a 100 milliseconds delay

KEYPADPORT = Ox0F;
V2KDelay1ms(100);
PORTCHG = 0x04; //Disable Port Change monitoring Module 1
//[Enable Port Change monitoring Module 0
/[Clear the Port Change monitoring Flag
//Port 0 Change is monitored

/- Activate port change interrupt
INTSRC1 &= OxEF; /IForce Interrupt vector 4 to be routed to Port Change
//module 0

//[Enable the PORT CHANGE 0 Module Interrupt
//Activate the Global Interrupts

INTEN1 |= 0x10;
GENINTEN = 0x01;

/l--Initialize the LCD
initicd(); /nitialise the LCD Module
sendlcdemd(LCD_L1C1); //Place LCD cursor on Line 1, Column 1

cptr=0;
while(msg1[cptr] !="0")
sendlcdchar(msg1[cptr++]);

/IDisplay "VRS51L3174" on first line of LCD display

sendlcdemd(LCD_L2C1); /IPlace LCD cursor on Line 2, Column 1

cptr =0;

while(msg2[cptr] !="0")
sendlcdchar(msg2[cptr++]);

V2KDelay1ms(1000);

/IDisplay "Waiting for Key.\0" on 2 line of LCD display
//Put a 1 seconds delay

/I--Loop Waiting for Keys to be pressed
while(1); Hnfinite Loop

Y/ End of main

—— Port Change Interrupt Function(s

void PortChange0Int(void) interrupt 4

{

unsigned char keypressed = 0x00; IIvar holding ASCII value of the last key
/lpressed (could be global)
/Ivariable to read the actual I/O port
//IRow position of the pressed key
/IColumn position of the pressed key

unsigned char keylines = 0x00;
unsigned char keyrow = 0x00;
unsigned char keycol = 0x00;

/I rows and columns association table
const char code keyrowmapl] =

{0xO0F,0x0F ,0x0F ,0x0F ,0x0F ,0xOF ,0x0F ,0x03,0x0F,0x0F ,0x0F,0x02,0x0F ,0x01,0x00,0x0F };
const char code keycolmap[]={0x0F,0x0F ,0x0F,0x02,0x0F,0x01,0x00,0x0F};

/I Ascii code associated with pressed key
const char code keyascii[4][3] = {
12131,
(458,
(7,8,9,
{0,
GENINTEN = 0x00; /IDisable the Global Interrupts
/I--Retrieve the line number
KEYPADPORT = 0x00;
V2KDelay1ms(10);
keylines = KEYPADPORT;
keylines &=0x0F;

/ISend 0 on each column
//Put a 10 millisecond delay
//IRead Keypad Port
/Nsolate lower nibble

if(keylines != OxOF)

www.ramtron.com

page 36 of 114

VRS51L3174

rRAM RSN

/l-retrieve the line value
keyrow = keyrowmap[keylines];

/I--Retrieve Column number

KEYPADPORTDIR = 0xFO0; /lcolumns are input / rows are output
KEYPADPORT = 0x00; /ISend 0 on each row
V2KDelay1ms(10); //Put a 10 millisecond delay

keylines = KEYPADPORT; //IRead Keypad Port

B = keylines;

keylines &=0xEOQ; /lIsolate upper 3 bit (columns)
keylines = (keylines >> 5); //Position columns to lower portion

/l-retrieve the line value
keycol = keycolmap[keylines];

if((keyrow != 0XOF)&& (keycol = OXFF))

{

/I--Get the ascii value of the key

keypressed = keyascii[keyrow][keycol];

sendlcdecmd(LCD_L2C1); /Place LCD cursor on Line 2, Column 1
cptr=0;

while(msgkey[cptr] !="0") /IDisplay "Last key: \0"
sendlcdchar(msgkey[cptr++]) //on second line of LCD display

/IDisplay the key value on the LCD display

sendlcdemd(LCD_L2C10); /IPlace LCD cursor on Line 2, Column 10
sendlcdchar(keypressed);

Y/lend of if key row / col

/--wait for the key to be released
do{

B= KEYPADPORT;

B &= 0xEO;

Jwhile(B != 0xEQ);

/I--Set KEYPADPORT as before

KEYPADPORTDIR = Ox0F; /IColumns are input / rows are output
KEYPADPORT = 0x0F; /IClear the Columns driver outputs
V2KDelay1ms(10); /I Put a 10 millisecond delay

Y/end of if keylines != OxFF

PORTCHG = 0x04; //Disable Port Change monitoring Module 1
//[Enable Port Change monitoring Module 0
/[Clear the Port Change monitoring Flag
//Port 0 Change is monitored

GENINTEN = 0x01; //Activate the Global Interrupts

Y/End of Port Change Interrupt

//.

" INDIVIDUALS FUNCTIONS
/I

(See demonstration programs...)

5 VRS51L3174 Timers

The VRS51L3174 includes three 16-bit timers: Timer
0, Timer 1 and Timer 2. The VRS51L3174 timers
include more functionality and features than standard
8051 timers:

o Timers 0, 1 can operate as one 16-bit timer or
two 8-bit timers

o Timers can count up/count down

Each timer includes a configurable divisor

o Timers can be chained together to form 24-,
32- or 48-bit timer/counters

o Each timer features an output that can
generate a pulse or toggle when the timer
overflows

o [Each timer provides counter input

o Each timer provides a gating pin

O

VRS51L3174 timers include a number of parameters
that can be adjusted independently, enabling
countless configurations to suit a diversity of
timing/counting applications. The structure of the timer
configuration registers has been simplified compared
to standard 8051 timer control registers.

The architecture of the registers controlling the
VRS51L3174’s three timers is the same for Timer O
and Timer 1 and almost the same for Timer 2.

5.1 Timer 0, Timer 1 Configuration

Timer 0 and Timer 1 operation is controlled by three
registers. The configuration of timers 0/1 is essentially
the same.

5.1.1 The TOT1CFG Register Overview

The TOT1CFG register controls the gating features of
both Timer 1 and Timer 0. The TxGATE bit controls
the clock gating of the timers. When this bit is set to 1,
the timer will only count when the INTx pin is high.

www.ramtron.com

page 37 of 114

VRS51L3174

rRAM RSN

TABLE 52: TIMER 0/ TIMER1 CONFIGURATION REGISTER - TOT1CFG SFR 89H

7 6 5 4 3 2 1 0
R R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 - Not used
6 T1GATE Timer 1 Gating Enable
0 = Timer 1 gating feature is disabled
1 = Timer 1 count only when INT1 pin is high
5 TOGATE Timer 0 Gating Enable
0 = Timer O gating feature is disabled
1 = Timer 0 count only when INTO pin is high
4 T1CLKSRC Timer 1 Clock Source
0 = Timer 1 takes its clock from system clock
1 = Timer 1 takes its clock from Timer 0 output
3 T10OUTEN Timer 1 Output Enable
0 = Timer 1 output is deactivated
1 = Timer 1 output is connected to a pin
2 T1MODES8 Timer 1 8-bit Operating Mode Enable
0 = Timer 1 operates as a 16-bit timer
1 = Timer 1 operates as two 8-bit timers
1 TOOUTEN Timer 0 Output Enable
0 = Timer 0 output is deactivated
1 = Timer 0 output is connected to a pin
0 TOMODES8 Timer 1 8-bit Operating Mode Enable
0 = Timer 1 operates as a 16-bit timer
1 = Timer 1 operates as two 8-bit timers

The T1CLKSRC bit defines which clock source will
feed Timer 1 when it is configured to operate in timer
mode. The Timer 1 clock source is defined as follows:

o T1CLKSRC =0 System Clock
o T1CLKSRC =1 Timer 0 Output (overflow)

When configured in timer mode, Timer 0 can only
derive its clock source from the system clock with the
proper prescaler value.

Both timers 1 and 0 can operate as two general
purpose 8-bit timers. This mode is activated by setting
the corresponding TxMODES8 bit of the TOT1CFG
register to 1.

TABLE 53:TIMERO / TIMER 1 CLOCK CONFIG. REGISTER - TOT1CLKCFG SFR 99H

7 6 5 4 3 2 1 0
R/W RW RW RW RW RW R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
74 T1CLKCFG[3:0] | Timer 1 Clock Prescaler Configuration

see table below

3:0 TOCLKCFG[3:0] | Timer 0 Clock Prescaler Configuration
see table below

TABLE 54:TIMERO / TIMER 1 CLOCK DIVISION RATIO

T0/1CLKCFG Timer Clock TO0/1CLKCFG Timer Clock
(4 bit binary) Div. Ratio Div. Ratio
0000 1 1000 256
0001 2 1001 512
0010 4 1010 1024
0011 8 1011 2048
0100 16 1100 4096
0101 32 1101 8192
0110 64 1110 16384
0111 128 1111 16384

5.1.2 The TOCON and T1CON Registers

The TOCON and T1CON SFR registers control the
following:

o Timer operation mode (timer or counter)
Advanced gating features of Timer 0 and
Timer 1

Timer overflow flag

Counting direction (up/down)

Timer reload and capture

Timer output mode (Pulse/Toggle)

@)

O O O O

These registers are fully orthogonal, which means that
for a given timer operating mode, the registers function
in the same manner.

TABLE 55:TIMER 0 CONFIGURATION REGISTER - TOCON SFR 9AH

7 6 5 4 3 2 1 0
RW RW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 TOOVF Timer 0 Overflow Flag

Set to 1 when timer overflow from FFFFh to
0000h. Must be cleared by software. (TO must
be running to clear T1OVF).

Writing 1 into this bit will trigger a timer interrupt,
if enabled

6 TOEXF Timer 0 External Flag Gating Flag
Set to 1 when timer reload of capture is caused
by an high to low transition on the TOEX pin, if

TOEXEN is set to 1

5 TODOWNEN Timer 0 Count Down Enable
0 = Timer O count up
1 = Timer 0 counts down

4 TOTOGOUT Timer 0 Output Toggle Enable

0 = Timer O output outputs a pulse when it
overflow from FFFFh to 0000h

1 = Timer 0 output toggle when it overflow from
FFFFh to 0000h

3 TOEXTEN Timer 0 External Gating Enable

0 = TOEX pin is not active

1 = Enable Timer O capture or reload upon a
high to low transition on the TOEX pin when

the timer 0 is configured in counter mode.

2 TRO Timer 0 Run
0 = Timer 0O is stopped

1 =Timer O is running

1 TOCOUNTEN Timer 0 Counter Enable

0 = Timer 0 acts as a timer

1 = Timer 0 acts as a counter that is
incremented (decremented) by a high to low
transition on TOIN pin

0 TORLCAP Timer 0 Capture Enable

0 = Auto reload value is loaded in Timer 0, if a
high to low transition occurs on TOEX, if
TOEXTEN is set to 1.

1 = Timer O current value is captured when a
high to low transition occurs on the TOEX
pin, if TOEXTEN is set to 1

www.ramtron.com

page 38 of 114

VRS51L3174

rRAM RSN

TABLE 56:TIMER 1 CONFIGURATION REGISTER - T1ICON SFR 9BH

7

6 5

4 3 2 1 0

R/W

R/W R/W

R/W R/W R/W R/W R/W

0

0 0

0 0 0 0 0

Bit

Mnemonic

Description

T10VF

Timer 1 Overflow Flag

Get set to 1 when timer overflow from FFFFh to
0000h. Must be cleared by software (T1 must
be running to clear T1OVF).

Writing 1 into this bit will trigger a timer interrupt,
if enabled

T1EXF

Timer 1 External Flag Gating Flag

Get set to 1 when timer reload of capture is
caused by an high to low transition on the T1EX
pin, if TIEXEN is set to 1

T1DOWNEN

Timer 1 Count Down Enable
0 = timer 1 count up
1 = Timer 1 counts down

T1TOGOUT

Timer 1 Output Toggle Enable

0 = Timer 1 output outputs a pulse when it
overflow from FFFFh to 0000h

1 = Timer 1 output toggle when it overflow from
FFFFh to 0000h

T1EXTEN

Timer 1 External Gating Enable

0 = T1EX pin is not active

1 = Enable Timer 1 capture or reload upon a
high to low transition on the T1EX pin when
the timer 1 is configured in counter mode.

The TxRLCAP bit defines the function of the timer
capture/reload register upon a high to low transition on
the TxEX timer trigger input pin.

o TxRLCAP = 0 : Auto reload value is loaded in
Timer x

o TxRLCAP = 1 : Timer x current value will be
captured

The functions associated with the TxRLCAP bit are
only activated when the corresponding TXEXTEN bit is
setto 1.

5.2 Timer 0 and Timer 1 Current Value
Register

Two SFR registers provide access to the current 16-bit

value of Timer 0 and Timer 1.

TABLE 57:TIMER 0 Low -TLO SFR 8AH

TR1

Timer1 Run
0 = Timer 1 is stopped
1 = Timer 1 is running

T1COUNTEN

Timer 1 Counter Enable

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 TLO[7:0]

0 = Timer 1 acts as a timer

1 = Timer 1 acts as a counter that is
incremented (decremented) by a high to low
transition on T1IN pin

TABLE 58:TIMER 0 HiGH - THO SFR 8BH

0 T1RLCAP Timer 1 Capture Enable

0 = Auto reload value is loaded in Timer 1, ifa
high to low transition occurs on T1EX; if
T1EXTEN is set to 1

1 = Timer 1 current value is captured when a
high to low transition occurs on the T1EX

pin, if TIEXTEN is set to 1.

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 THO[7:0]

The TxOVF bit of the TXCON register indicates that
the timer count has rolled over from FFFFh to 0000h. If
the corresponding timer interrupt has been enabled,
the TxOVF will raise the interrupt.

The TxEXF flags are set to 1 when a high to low
transition occurs on the corresponding TxEX pin,
provided that the TXEXEN pin is set to 1.

Timer 0 and Timer 1 can count up or down. By default,
the timers count up. However setting the TxDOWNEN
bit to 1 will make the timer count down .

The TxCOUNTEN bit allows the timer to be configured
as an external event counter. By default, the timers
derive their source from the system clock or a
prescaled source. Setting the TxCOUNTEN bit to 1,
will configure the corresponding timer to derive its
source from the timer input pin (TxIN). A high to low
transition on the timer input pin will make the timer
count one step up or one step down, depending on the
value of the corresponding TXDOWNEN bit.

TABLE 59:TIMER 1 Low -TL1 SFR8CH

7 6 5 4 3 2 1 0
RIW RIW RW RW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 TLA[7:0]

TABLE 60:TIMER 1 HIGH - THO SFR 8DH

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RIW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 THO[7:0]

www.ramtron.com

page 39 of 114

VRS51L3174

rRAM RSN

5.21 Timer 0 Reload and Capture Registers

Both Timer 0 and Timer 1 have an auxiliary 16-bit
reload/capture register, which is accessible through
two SFR registers as follows:

TABLE 61:TIMER 0 RELOAD AND CAPTURE Low - RCAPOL SFR 92H

7 6 5 4 3 2 1 0
RIW RIW RW RIW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAPOL[7:0]

TABLE 62: TIMER 0 RELOAD AND CAPTURE HiGH - RCAPOH SFR 93H

7 6 5 4 3 2 1 0
RIW RIW RW RIW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAPOQH[7:0]

TABLE 63:TIMER 1 RELOAD AND CAPTURE Low — RCAP1L SFR 94H

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAP1L[7:0]

TABLE 64:TIMER 1 RELOAD AND CAPTURE HIGH - RCAP1H SFR 95H

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAP1H[7:0]

The content of the Timer reload capture registers
(RCAPxH / RCAPxL) will be reloaded into the timer
when the timer overflow occurs.

5.2.2 Timer 0/1 Output

Timer 0 and Timer 1 outputs can be routed to an
external pin. This feature is activated by setting the
TxOUTEN bit of the TxCLKCFG register to 1. By
default, the timer outputs, when enabled, will generate
a pulse upon timer overflow. The duration of the pulse
equals 1/ SYS CLK.

Setting the TXTOGOUT bit of the TxCON register to 1
will configure the timer x output to toggle upon a timer
overflow instead of generating a pulse.

FIGURE 13: TIMER 0, TIMER 1 OUTPUT MODES

TXOUTEN =1
TXTOGOUT = 1

TXOUTEN =1
TXTOGOUT = 0

Timer 0/1
Overflow

www.ramtron.com

page 40 of 114

VRS51L3174

rRAM RSN

5.3 Timer 0, Timer 1 Functional Diagram

The following diagram represents the main features of timers 0 and 1

FIGURE 14: TIMER 0, TIMER 1 FUNCTIONAL DIAGRAM

TxCLKSRC

t

TxIN pin

TRx

TxMODES8

INTx pin

TxEX pin

TXEXTEN

TxDOWNEN
TXCLKCFG
Div Ratio:
Sys Clk /1 i
Downto TXCOUNTEN _
Sys Clk / 16384 DoMmILE TLx
0 7
ok |[|[LITTTTTT]
‘ TRx A
\J
RCAPxL
\ 0 7

TXGATE 4‘>%

TxRLCAP _l/
Reloa

RCAPxH

I Reload

Capture

Capture

---TOUTEN

TxOVF
interrupt

www.ramtron.com

page 41 of 114

VRS51L3174

rRAM RSN

5.4 Timer 0, Timer1 Examples Programs

5.41 Timer 0 1ms Delay Function

;" DELAY1MSTO : 1MS DELAY USING TIMERO
;*; *CALIBRATED FOR 40MHZ

DELAY1MST0: MOV
Mov
ORL
MOV

DELAY1MSLP: MOV
MOV
MOV
MOV

MOV
MoV

DWAITOVTO: MOV

ANL
Jz

MOV
DJINZ

MoV
ANL
MoV
RET

CPTRA ;GET NUMBER OF CYCLES

A,PERIPHEN1 ;LOAD PERIPHEN1 REG

A#00000001B ;ENABLE TIMER 0

PERIPHEN1,A

THO,#063H ;TO RELOAD VALUE FOR 1MS AT 40MHZ

TLO,#0COH

THO,#0A9H ;TO RELOAD VALUE FOR 1MS AT 22.11MHZ

TLO,#058H

TOT1CLKCFG,#00H ;NO PRESCALER FOR T0 CLOCK

TOCON,#00000100B ;START TO, COUNT UP

A,TOCON ;READ TO CONTROL, WAIT FOR
;OVERFLOW

A#080H ;ISOLATE TIMER OVERFLOW FLAG

DWAITOVTO ;LOOP AS LONG AS TO DON'T OVERFLOW

TOCON,#00H ;STOP TIMER 0

CPTR,DELAY1MSLP ;Out Loop

A,PERIPHEN1 ;LOAD PERIPHEN1 REG

A#11111110B ;DISABLEBLE TIMER 0

PERIPHEN1,A

5.4.2 Timer 0, Timer 1 and Timer 2 Output
Toggle Example

;- TIMER 0, TIMER 1 AND TMER 2, OUTPUT TOGGLE EXAMPLE *

include <VRS51L3174.inc>

;- Enable Timer 0, Timer 1 and Timer 2
INIT: MOV PERIPHEN1,#00000111B

MOV PERIPHEN2,#00001000B

;BIT7 - SPICS EN
;BIT6 - SPIEN
;BIT5 - 12CEN
;BIT4 - U1EN
;BIT3 - UOEN
;BIT2 - T2EN
;BIT1-T1EN
;BITO - TOEN

;BIT7 - PWC1EN
;BIT6 - PWCOEN
;BITS - AUEN

;BIT4 - XRAM2CODE
;BIT3 - IOPORTEN
;BIT2 - WDTEN

;BIT1 - PWMSFREN
;BITO - FPIEN

;** CONFIGURE AND START TIMER 0, TIMER 1 & TIMER 2

MOV TOT1CFG,#00001010B

MOV T2CLKCFG,#00010110B

MOV TOCON,#14H
MOV T1CON,#14H
MOV T2CON,#14H

LOOP: AJMP LOOP

;CONNECT TIMERO OUTPUT TO P4.5 and
;TIMER1 OUTPUT TO P4.0, TIMER SOURCE
;FROM SYS CLK

;T2 SSOURCE = SYS CLK, T20UT
;ENABLED ON P1.2, PRESCALER = SYS
;CLK/64

;START TIMERO, TOGGLE OUTPUT
;START TIMER1, TOGGLE OUTPUT
;START TIMER2, TOGGLE OUTPUT

;INFINITE LOOP

5.4.3 Timer 0, Timer 1 and Timer 2 Output
Toggle and Timer Chaining Example

;- TIMER 0, TIMER 1 AND TMER 2, OUTPUT TOGGLE + TIMER CHAINING EXAMPLE *

Include <VRS51L3174.inc>

INIT: MOV PERIPHEN1,#00000111B ;BIT7 - SPICS EN
;BIT6 - SPIEN
;BIT5 - 12CEN
;BIT4 - U1EN
;BIT3 - UCEN
;BIT2 - T2EN
;BIT1-T1EN
;BITO - TOEN

MOV PERIPHEN2,#00001000B ;BIT7 - PWC1EN
;BIT6 - PWCOEN
;BITS - AUEN
;BIT4 - XRAM2CODE
;BIT3 - IOPORTEN
;BIT2 - WDTEN
;BIT1 - PWMSFREN
;BITO - FPIEN

;- SET THE SYSTEM CLOCK PRESCALER TO MAX SPEED

;** CONFIGURE AND START TIMER 0, TIMER 1 & TIMER 2

MOV TOCON,#14H ;START TIMERO, TOGGLE OUTPUT

MOV T1CON,#14H ;START TIMER1, TIMER1 TOGGLE
;OUTPUT

MOV T2CON,#14H ;START TIMER2, TIMER2 TOGGLE
;OUTPUT

MOV TOT1CFG,#00001000B ;CONNECT TIMER1 OUTPUT TO P4.0

MOV T2CLKCFG,#00110000B ;TIMER 2 USES TIMER1 OUTPUT AS
;CLOCK SOURCE, T2 OUT ON P1.2,
;CLOCK PRESCALER =1

LOOP: AJMP LOOP ;INFINITE LOOP

www.ramtron.com

page 42 of 114

VRS51L3174

rRAM RSN

5.5 Timer2

The architecture of Timer 2 is very similar to that of
timers 0 and 1, the main difference being that Timer 2
cannot operate as two 8-bit timers.

5.5.1 Timer 2 Configuration Registers
The T2CON register controls:

Timer operation mode (timer or counter)
Timer 2 advanced gating features
Timer 2 overflow flag

Timer 2 counting direction (up/down)
Timer 2 reload and capture

Timer 2 output mode (pulse/toggle)

O O O O O O

The T2CON register has the same structure as the
TOCON and T1CON registers.

TABLE 65:TIMER 2 CONFIGURATION REGISTER - T2CON SFR 9CH

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW R/W RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 T20VF Timer 2 Overflow Flag

Set to 1 when timer overflows from FFFFh to
0000h. Must be cleared by software.

Writing 1 into this bit will trigger a timer interrupt,
if enabled

6 T2EXF Timer 2 External Flag Gating Flag
Set to 1 when timer reload of capture is caused
by an high to low transition on the T2EX pin, if

T2EXEN is set to 1

5 T2DOWNEN Timer 2 Count Down Enable
0 = Timer 2 count up
1 = Timer 2 counts down

4 T2TOGOUT Timer 2 Output Toggle Enable

0 = Timer 2 output outputs a pulse when it
overflows from FFFFh to 0000h

1 = Timer 2 output toggles when it overflows

from FFFFh to 0000h

3 T2EXTEN Timer 2 External Gating Enable

0 = T2EX pin is not active

1 = Enable Timer 1 capture or reload upon a
high to low transition on the T2EX pin
when the timer 2 is configured in counter

mode.

2 TR2 Timer2 Run
0 = Timer 2 is stopped

1 =Timer 2 is running

1 T2COUNTEN Timer 2 Counter Enable

0 = Timer 2 acts as a timer

1 = Timer 2 acts as a counter that is
incremented (decremented) by a high to low
transition on T2IN pin

0 T2RLCAP Timer 2 Capture Enable

0 = Auto reload value is loaded in Timer 2 if a
high to low transition occurs on T2EX; if
T2EXTEN is set to 1

1 = Timer 2 current value is captured when a
high to low transition occurs on the T2EX
pin, if T2ZEXTEN is set to 1

The T20VF bit of the T2CON register indicates
whether the timer count has rolled over from FFFFh to
0000h. If the corresponding timer interrupt has been
activated, the T20VF will raise the Timer 2 interrupt..

The T2EXF flags are set to 1 when a high to low
transition occurs on the T2EX pin, provided that the
T2EXE pin is set to 1.

As is the case for timers 0 and 1, Timer 2 can be
configured to count up or down. By default, Timer 2
counts up. However setting the T2DOWNEN bit to 1
will configure Timer 2 to count down. When the timer
counts downwards, the overflow flag will be set when
the timer counts from 0000h to FFFFh.

The T2COUNTEN bit- enables the configuration of
Timer 2 as a external event counter. By default, Timer
2 derives its source from the system clock or a
prescaled system clock. Setting the T2COUNTEN bit
to 1 will configure Timer 2 to derive its source from the
T2IN input pin. A high to low transition on the T2IN pin
will initiate a timer count one step up or down,
depending on the value of the corresponding
T2DOWNEN bit.

The T2RLCAP bit controls the function of the timer
capture/reload register when a high to low transition
occurs on the T2EX timer trigger input pin.

o T2RLCAP = 0 : Auto reload value is loaded in
Timer 2

o T2RLCAP = 1 : Timer 2 current value will be
captured in the RCAP2L and RCAPZ2H
registers

The functions associated with the T2RLCAP bit are
only activated when the T2EXTEN bit is set to 1.

TABLE 66:TIMER 2 Low -TL2 SFR 8EH

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 TL2[7:0]

TABLE 67:TIMER 2 HIGH — TH2 SFR 8FH

7 6 5 4 3 2 1 0
RIW RW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 TH2[7:0]

www.ramtron.com

page 43 of 114

VRS51L3174

rRAM RSN

5.5.2 Timer 2 Reload and Capture Registers

TABLE 68:TIMER 2 RELOAD AND CAPTURE Low — RCAP2L SFR 96H

TABLE 71:TIMER 2 CLOCK DIVISION RATIO

7 6 5 4 3 2 1 0
RW RW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAP2L[7:0]

TABLE 69:TIMER 2 RELOAD AND CAPTURE HIGH — RCAP2H SFR 97H

T2CLKCFG Timer Clock T2CLKCFG Timer Clock
(4 bit binary) Div. Ratio Div. Ratio
0000 1 1000 256
0001 2 1001 512
0010 4 1010 1024
0011 8 1011 2048
0100 16 1100 4096
0101 32 1101 8192
0110 64 1110 16384
0111 128 1111 16384

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 RCAP2H[7:0]

The content of the Timer 2 reload capture registers
(RCAP2H / RCAP2L) will be reloaded into the timer
when the timer overflow occurs.

5.5.3 The Timer 2 Clock Configuration
Register

The T2CLKCFG register is used to configure the clock
source for Timer 2. The source can be either a
prescaled value of the system clock or the output of
Timer 1.

The Timer 2 clock source is also controlled by the
T2CLKSRC bit. When this bit is set to 1, Timer 2
derives its source from the Timer 1 overflow. If
T2CLKSRC is set to 0, Timer 2 will derive its source
from a prescaled value of the system clock. The
division factor applied to the system clock is defined by
T2CLKCFG[3:0]

TABLE 70:TIMER2 CLOCK CONFIGURATION REGISTER - T2CLKCFG SFR 9DH

5.5.4 Timer 2 Output

As is the case for timers 0 and 1, Timer 2’s output can
be routed to an external pin. This feature is activated
by setting the T20UTEN bit of the T2CLKCFG register
to 1. By default, the Timer 2 output, when enabled, will
generate a pulse upon Timer 2 overflow. The duration
of the pulse is (1/ SYS CLK).

Setting the T2TOGOUT bit of the T2CON register to 1
will configure Timer 2’s output to toggle upon a Timer
2 overflow instead of outputting a pulse.

FIGURE 15: TIMER 2 OUTPUT MODES

Timer2
OverfFlow

/\

5.6 Timer 2 Alternate Mapping

Bit 2 of the DEVIOMAP register (SFR E1h) controls
the mapping of the Timer 2 interface as shown in the
following table:

TABLE 72: TIMER 2 PIN MAPPING

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 B
6 -
5 T2CLKSRC Timer 2 Clock Source

0 = Timer 2 take its clock from system clock
1 = Timer 2 takes its clock from Timer 1 output

DEVIOMAP.2 | T2IN T2EX T20UT
Bit Value mapping mapping mapping
0 (Reset) P1.0 P1.1 P1.2
1 - - P4.4

4 T20UTEN Timer 2 Output Enable

0 = Timer 2 output is deactivated

1 = Timer 2 output is connected to a pin
3:0 T2CLKCFG[3:0] | Timer 2 Clock Prescaler Configuration

See Table below

The following table outlines the Timer 2 prescaler
values according to the value of the T2CLKCFG[3:0]
bits.

Alternate mapping allows Timer 2’'s output to be
mapped into P4.4 instead of P1.2. This can be useful
for applications where both UARTO and UART1 are
required.

www.ramtron.com

page 44 of 114

VRS51L3174

rRAM RSN

5.7 Timer 2 Functional Diagram

The following diagram describes the main features of Timer 2.

FIGURE 16: TIMER 2 FUNCTIONAL DIAGRAM

T2CLKSRC

SYSCLK

T2CLKCFG
Div Ratio:
Sys Clk /1

Downto
Sys Clk / 16384

T2IN pin

TR2

INTX pin

T2EX pin

T2EXTEN

T2GATE W

T2DOWNEN
T2COUNTEN O T

0 7
\ CLK[: LITTTTTT]

TR2 A
\ \
RCAP2L RCAP2H
0 7 0 7

T2RLCAP j
Reload

I Reloaa

°
8
2
3

---T20UTEN

T20VF
interrupt

www.ramtron.com

page 45 of 114

VRS51L3174

rRAM RSN

5.8 Timer Chaining Capability

The three VRS51L3174 timers can be chained
together to form a 24-, 32- or 48-bit timer that can be
used for very long delay timing. Longer delays can be
achieved by using the system clock prescalers.

The following provides an example of time delays that
can be achieved by timer chaining:

TABLE 73: TIME DELAYS VS. TIMER SIzE FOR 40MHz SysTEM CLOCK

Timer Size Time out period

16 bit 1.638 milliseconds

24 bit 419 milliseconds

32 bit 107 sec-seconds

48 bit 7.037x10E6 seconds
(1954.6 hours)

The following diagram provides a schematic
representation of timer chaining.

FIGURE 17: TIMER CHAINING

(o] | ¢

T1CLKCFG T2CLKCFG
O Ratio:

DRt

DDDDDD
sssssssss o4 SYSCLK 16384

TOCLKCFG Timer 2ouf—
SZ‘;’SC‘K% —— Timer 0 Timer 1o
o ol

T1CLKSRC T2CLKSRC

Note that timer chaining does not affect other timer
features such as:

o Timer capture
o Timer auto-reload
o Timer output

It is also possible to couple the timer chaining
capability with the pulse width counter (see next
section), to count long duration events.

6 Pulse Width Counters (PWC)

The VRS51L3174 provides two independent pulse
width counter modules associated with timers 0 and 1.
The pulse width counter modules provide advanced
timer control, the user to define which event will make
the timer start and stop. Contrary to standard timer
capture module units, the PWC unit can be used to
measure the duration of an event.

The following two diagrams provide a schematic view
of the PWC modules’ structure and functionality.

FIGURE 18: PWCO0 MODULE STRUCTURE

Timer 0
Sys Clk /1
Downto

Sys Clk / 16384

Timer 0

The PWC modules interact with timers 0 and 1.
Combining the PWC module configuration with the
timer configuration provides added flexibility to the
operating modes.

Two SFR registers (PWCOCFG and PWC1CFG
located at addresses 9Eh and 9Fh, respectively) are
dedicated to PWC configuration.

www.ramtron.com

page 46 of 114

VRS51L3174

rRAM RSN

TABLE 74:PuLse WIDTH COUNTER 0 CONFIG. REGISTER - PWCOCFG SFR 9EH

7

6 5

4 3 2 1 0

R/W

R/W R/W

R/W R/W R/W R/W R/W

0

0 0

0 0 0 0 0

Bit

Mnemonic

Description

PWCOIF

Pulse Width Counter Module 0 Interrupt Flag
0 = No PWCQO interrupt occurred
1 = PWCO interrupt occurred

PWCORST

Read:

Pulse Width Counter Operation Status
0 = PWCO is waiting for start condition
1= PWCQO is currently counting

Write:

Pulse Width Counter Reset

0 = No action

1 = Reset PWCO operation and PWCOIF
PWCO will wait for a start condition

PWCOENDPOL

PWCO End Event Polarity
0 = PWCO end event is a rising edge
1= PWCO end event is a falling edge

PWCOSTPOL

PWCO Start Event Polarity
0 = PWCO start event is a rising edge
1 = PWCO start event is a falling edge

3:2

PWCOENDSRC
[1:0]

PWCO End Source
00 = P3.2
01=P3.0
10=P24
11 =P34

1:0

PWCOSTSRC
[1:0]

PWCO Start Source
00 =P3.2
01=P3.0
10=P24
11=P34

TABLE 75:PuLse WIDTH COUNTER 1 CONFIG. REGISTER - PWC1CFG SFR 9FH

7

6 5

4 3 2 1 0

R/W

R/W RW

R/W R/W R/W R/W R/W

0

0 0

0 0 0 0 0

Bit

Mnemonic

Description

PWC1IF

Pulse Width Counter Module 0 Interrupt Flag
0 = No PWC1 interrupt occurred
1 = PWC1 interrupt occurred

PWC1RST

Read:

Pulse Width Counter Operation Status
0 = PWCH1 is waiting for start condition
1= PWCH1 is currently counting

Write:

Pulse Width Counter Reset

0 = No action

1 = Reset PWC1 operation and PWCOIF
PWCO will wait for a start condition

The configuration of the PWC module involves the
following steps:

Activate the PWC module

Activate timer and configure in gating mode
Configure PWC start and stop source
Configure PWC start and stop event
Initialize timer to 0x0002

Activate PWC interrupt, if required

O O O O O O

6.1.1 PWC Module and Timer Initialization

The PWCO0/1 modules operate in conjunction with
timers 0/1. The timer must be activated and configured
in gating mode immediately after the PWC modules
have been enabled. To obtain a precise measurement
of the event duration, the timer registers [THx,TLX]
must be initialized to 00, 02h.

Once a stop event occurs, the event duration in terms
of system cycles is stored in the timer registers. Once
the timer has been read, the software must clear it for

the next event.
/I PWCO Timer initialization
ptr = (char idata *) &result_dump_start_address_pwcO0;
PERIPHEN2 |= 0x40; //[Enable pwc0 (enabled first to gate timer
/Ibefore timer enable !!!)
/[Enable Timer 0

/ISet Timer 0 in gate mode
/Initialize Timer

PERIPHEN1 |= 0x01;
TOT1CFG = 0x02;
TLO = 0x02;

THO = 0x00;

PWCOCFG |= 0x15; //Configure PWCO module to start on a Falling edge and

/IEnd on a Rising edge on pin P3.0 for both events
The timer start source can differ from the timer stop
source and the start event can differ from the end
event. The PWC start and end sources are defined by
the PWCxSTSRC bits of the PWCxCFG register as
shown in the following tables:

TABLE 76:PuLSE WIDTH COUNTER 0 START / STOP SOUCE CONFIGURATION

PWC1ENDPOL

PWC1 END Event Polarity
0 = PWC1 end event is a rising edge
1 =PWC1 end event is a falling edge

PWC1STPOL

PWC1 Start Event Polarity
0 = PWC1 start event is a rising edge
1 =PWC1 start event is a falling edge

3:2

PWC1ENDSRC
[1:0]

PWC1 End Source
00=P3.3
01=P1.2

10 = Reserved
11=P1.6

PWCOSTSRC | PWCO Start | PWCOENDSRC | PWCO End

Source Source

00 P3.2 —INTO 00 P3.2 — INTO

01 P3.0 — RXDO 01 P3.0 — RXDO
default default

10 P2.4 — RXDO 10 P2.4 — RXDO
alternate alternate

11 P3.4 — TOIN 11 P3.4 — TOIN

TABLE 77:PuLSE WIDTH COUNTER 1 START / STOP SOUCE CONFIGURATION

PWC1STSRC | PWC1 Start | PWC1ENDSRC | PWC1 End

1:0

PWC1STSRC
[1:0]

PWC1 Start Source
00 =P3.3
01=P1.2

10 = Reserved
11=P1.6

Source Source
00 P3.3 - INT1 00 P3.3 - INT1
01 P1.2 — RXD1 01 P1.2 — RXD1
default default
10 Reserved 10 Reserved
11 P1.6 11 P1.6

Start and stop events must be triggered by either a
rising edge or a falling edge of the selected start and
stop source.

www.ramtron.com

page 47 of 114

VRS51L3174

rRAM RSN

The PWC start source polarity is defined by the
PWCxSTPOL and the stop source polarity is defined
by the PWXCENDPOL. When these bits are cleared,
the PWC module will be triggered by a rising edge (low
to high). Setting these bits to 1 configures the PWC to
be triggered by a falling edge (high to low).

6.1.2 PWC Module Reset and Interrupt Flags

The PWCxRST bit, when set to 1 will reset the PWC
module and clear the PWCKXIF flag if it is set. The PWC
module will then wait for the start condition. The
PWCxRST flag provides the current state of the PWC
module as follows:

TABLE 78: DEFINITION OF PWCXRST BIT WHEN READ

PWCxRST reads as Then...
0 PWC module is waiting for a start
condition
1 PWC module is currently counting

The PWCKXIF bit will be set to 1 when a stop condition
is encountered by the PWC module. The PWCxIF
must be cleared by the program. One interrupt vector
(Int 11) is allocated for the two PWC modules and its
vector address is 005Bh.

Note:

o The PWCKXIF flag remains active even if the
corresponding PWC interrupt is disabled.

o The PWCxIF flags are not automatically
cleared when exiting the interrupt service
routine. They must be cleared manually by the
software.

6.2 PWC Example Programs

The following example program demonstrates how to
configure and use the PWC1 module in pooling mode.

1]. //
/I V2K_PWC1p1in_T2out_SDCC.c //
//. //

I

// DESCRIPTION:

For this demonstration program Timer 2 is configured to

/I continuously run in Output Toggle Mode on its alternate output (P1.2) and
/I is used to generate the stimuli required for the PWC1 module input.

I The port 0 is used to monitor the activity of the PWC1 module.

1

/I TARGET: VRS51L2xxx/VRS51L3xxx

/-

#include <VRS51L3174_SDCC.h>
void main (void) {
//[Enable Timer 0 and Timer 2
/l--Initialize PWC1

PERIPHEN2 |= 0x088;
PERIPHENT1 |= 0x02;

//[Enable the PWC1 module & |Oport
//[Enable Timer 1

POPINCFG = 0x00; //PO = Output
TOT1CFG |= 0x40; //Set Timer 1 in Gating mode
TH1 = 0x00; /nitialize Timer 1 to 0x02
TL1 = 0x02;

/I TAICON |= 0x04; /IRun Timer 1
/IConfigure Timer 2 as a Timer with output toggle
PERIPHEN1 |= 0x04; /I Timer 2
TH2 = 0xAO; //Config Timer 2 initial value
TL2 = 0x00;

RCAP2H = 0xAQ;
RCAP2L = 0x00;
//Configure Timer Clock source & output Enable
T2CLKCFG = 0x10; /IT2 Clk source = System Clock
/IT2 Output Enable
/IPrescaler = Fosc / 1
//Configure Timer 2 Alternate output
DEVIOMAP |= 0x04;

/IConfig Timer 2 Reload value

/IConfig T2 output toggle and Start Timer

T2CON = 0x14; /[Timer 2 output toggle
/[Timer 2 Run
/ITimer mode from Sys Clk

//Configure PWC1 to Start T1 on a rising edge & Stop T1 on a falling edge
/l(will measure T2 period)
PWC1CFG = 0x65; //Bit 6 = 1: Reset PWC (bit 6 = 1)

//Bit 5 = 1: Start on Rising Edge

/IBit 4 = 0 Stop on rising edge

//Bit 3:2 =01 PWC1 START / STOP input = P1.2- T2out*
Hnfinite loop of PWC1 module monitoring by pooling

//The PO is used to monitor the activity of the PWC1 module

/When the PWC1 Start condition is met, the program set PO to 0x00

/land return it to OxFF when the Stop condition occurs

PO = OxFF; //Set PO to OxFF (PWC not running)

do{
/IPWC1CFG |= 0x40; /IForce the PWC1 module to wait for a START condition

while(!(PWC1CFG&0x40)); /Iwait PWC to start

PO = 0x00; /Iclear PO

while(/(PWC1CFG&0x80)); Ilwait PWC stop condition to occurs ie interrupt found
PO = OxFF; /Ireturn PO to FF to indicate PWC stopped
PWC1CFG &= O0x7F;

TL1 = 0x02; /Nnitialize Timer 1 to 0x02

TH1 = 0x00;

Iwhile(1);

¥/ End of main

www.ramtron.com

page 48 of 114

VRS51L3174

rRAM RSN

7 UART Serial Ports

The serial ports on the VRS51L3174 operate in full
duplex mode. However, the communication speed will
be the same for transmission and reception.
Communication speed is derived from an internal 16-
bit baud rate generator dedicated to each of the
UARTS.

7.1 UARTO0 RX/ TX Data Buffer

The serial port features double buffering on the
receiving side. The SFR register, UARTOBUF,
provides access to the transmit and receive registers
of the serial port.

When a read operation is performed on the
UARTOBUEF register, it will access the receive register
double buffer. When a write operation is performed on
the UARTOBUF, the transmit register will be loaded
with the value to be transmitted.

TABLE 79:UARTO0 DATA RX/ TX REGISTER UARTOBUF SFR A3H

TABLE 81:UARTO0 BAuD RATE REGISTER Low — UARTOBRL SFR A4H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RIW RW
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 UARTOBRL[7:0] | UARTO LSB of Baud Rate Generator

TaBLE 82:UARTO BAup RATE REGISTER HIGH — UARTOBRH SFR A5H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 UARTOBRH[7:0] | UARTO MSB of Baud Rate Generator

TABLE 83:UARTO0 EXTENSIONS CONFIGURATION - UARTOEXT SFR A6H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW R/W RW
0 0 1 0 0 0 0 0

Bit Mnemonic Description

7 UOTIMERF UARTO Timer Flag

6 UOTIMEREN UARTO Timer Enable

5 UORXSTATE UARTO RX Line State

4 MULTIPROC When set, RX_available only raise if the ninth
received bit is '1'

3 J1708PRI[3:0] | When a transmit is requested, it starts after the

« priority » bit to ‘1” has been probed on the RX
line

A standard UART has ‘0000’ priority

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 UARTOBUF([7:0] Read: UARTO Receive Buffer
Write: UARTO Transmit Buffer

7.2 UARTO Configuration Registers

The configuration of the UARTO is controlled by the
UARTOCFG, the UARTOBRH and UARTOBLH
registers and the UARTOEXT registers.

TABLE 80:UARTO CONFIGURATION REGISTER - UARTOCFG SFR A2H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
1 1 1 0 0 0 0 0
Bit Mnemonic Description

74 BRADJ[3:0] UARTO Baud Rate Fine Adjustment

* see formula below

3 BRCLKSRC Baud Rate Clock Source

0 = Baud rate generator uses oscillator

1 = Baud rate generator uses external clock
source

2 BORXTX Read: Last received 9" bit
Write: 9" bit to transmit
1 BOEN 9™ Bit Mode Enable
0 = Data transfer are in 8-bit format
1 = Data transfer are in 9-bit format
0 STOP2EN Enable Two Stop Bit Mode

0 = One stop bit
1 = Two stop bit

7.3 UARTO Interrupt Configuration
Register

The activation of the UARTO interrupt is a two-stage
process that involves enabling the interrupts at the
UARTO module level and then activating the UARTO
interrupt at the system level through the INTEN1
register. The upper nibble of the UARTOINT register
contains the UARTO interrupt activation bits and the
lower nibble contains the UARTO interrupt flags in the
same order.

Two interrupt vectors are associated with UARTO. The
first interrupt vector is at address 002Bh and handles
all UARTO interrupt conditions, except for the UARTO
data collision interrupt (vector address 0053h), which
is shared with the UART1 data collision and the I2C
master lost arbitration interrupts.

The interrupt flags allow the interrupt service routine to
define which condition triggered the interrupt, and to
react accordingly. Note that the interrupt flags do not
require the interrupt to be enabled in order to be
operational. They can be monitored by the software at
any time.

www.ramtron.com

page 49 of 114

VRS51L3174

rRAM RSN

TABLE 84: UARTO INTERRUPT REGISTER - UARTOINT SFR A1H

7

6 5

4 3 2 1 0

R/W

R/W R/W

R/W R, W R/W R, W R

0

0 0

0 0 0 0

-

Bit

Mnemonic

Description

COLEN

UARTO Collision Interrupt Enable
0 = Collision interrupt is deactivated
1 = Collision interrupt is enabled

RXOVEN

UARTO RX Overrun Interrupt Enable
0 = RX Overrun interrupt is deactivated
1 = RX Overrun interrupt is enabled

RXAVAILEN

UARTO RX Available Interrupt Enable
0 = RX Available interrupt is deactivated
1 = RX Available interrupt is enabled

7.4 UART1 RX/TX Data Buffer

The SFR register (UART1BUF) provides access to the
transmit and receive registers of the serial port. When
a read operation is performed on the UART1BUF
register, it will access the receive register. When a
write operation is performed on the UART1SBUF, the
transmit register will be loaded with the value to be
transmitted.

TaBLE 85:UART1 DATA RX/ TX REGISTER UART1BUF SFR B3H

TXEMPTYEN

UARTO TX Empty Interrupt Enable
0 = TX Empty interrupt is deactivated
1 = TX Empty interrupt is enabled

COLENF

(Read) Collision Interrupt Flag
When this flag is set by the UARTO module, it
indicates that a collision occurred

(Write)

0 = Collision detection is disabled and the
collision COLENF is reset

1 = A bus collision stops the transmission and
raises the COLENF flag

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 UART1BUF[7:0] | Read: UART1 Receive Buffer
Write: UART1 Transmit Buffer

RXOVF

UARTO RX Overrun Flag

When set to 1 by the UARTO interface, it
indicates that a data collision occurred in the
UARTOBUF register

RXAVENF

R: UARTO RX Available Flag

When set to 1 by the UARTO interface, it
indicates that data has been received in the
UARTOBUF register. Will be automatically
cleared when UARTOBUF is read

W: UART RX enable
Writing 1 into this bit position will activate
reception on UARTO.

Clearing this bit 0 will deactivate the reception
on UARTO

7.5 UART1 Configuration registers

The configuration of the UART1 is controlled by the
UART1CFG, UART1BRH and UART1BLH registers
and the UART1EXT registers.

TABLE 86:UART1 CONFIGURATION REGISTER - UART1CFG SFR B2+

TXEMPTYF

UARTO TX Empty Flag

When set to 1, it indicates that the transmit
portion of the UARTOBUF is ready to receive
another byte

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW
1 1 1 0 0 0 0 0
Bit Mnemonic Description

74 BRADJI[3:0] UART1 Baud Rate Fine Adjustment

* see formula below

3 BRCLKSRC Baud Rate Clock Source
0 = Baud rate generator uses oscillator
1 = Baud rate generator uses external clock

source

Read: Last received 9" bit
Write: 9" bit to transmit

2 BORXTX

9™ Bit Mode Enable
0 = Data transfer are in 8-bit format
1 = Data Transfer are in 9-bit format

1 BY9EN

0 STOP2EN Enable Two Stop Bit Mode
0 = One stop bit

1 = Two stop bit

TABLE 87:UART1 BAuD RATE REGISTER Low — UART1BRL SFR B4+

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 UART1BRL[7:0] UART1 LSB of Baud Rate Generator
TaBLE 88:UART1 BAuD RATE REGISTER HiGH — UART1BRH SFR B5H
7 6 5 4 3 2 1 0
RW RW RW RW RW RW R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 UART1BRH[7:0] | UART1 MSB of Baud Rate Generator

www.ramtron.com

page 50 of 114

VRS51L3174

rRAM RSN

TABLE 89:UART1 EXTENSIONS CONFIGURATION - UART1EXT SFR B6H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 1 0 0 0 0 0
Bit Mnemonic Description

U1TIMERF UART1 Timer Flag

U1TIMEREN UART1 Timer Enable

7.7 UARTO, UART1 Baud Rate Formula

The UARTO baud rate is programmed using the
following formula:

7

6

5 U1RXSTATE UART1 RX Line State

4 MULTIPROC When set, RX_available, only raise if the ninth
received bit is 1"

3:0 J1708PRI[3:0] | When a transmit is requested, it starts after the
« priority » bit to ‘1" has been probed on the RX
line

A standard UART has ‘0000’ priority

Baud Rate = Fclk
32x (UARTxBR[15:0] + BRADJ[3:0]/16 + 1)

7.6 UART1 Interrupt Configuration
Register

The activation of UART1’s interrupt is a two stage

process that involves enabling the interrupts at the

UART1 module level and then activating the UART1

interrupt at the system level through the INTEN1
register.

TABLE 90: UART1 INTERRUPT REGISTER - UART1INT SFR B1H

The BRADJ[3:0] bits are used for fine adjustment of
the baud rate.

The following steps demonstrate using the
UARTxBR[15:0] and BRADJ[3:0] registers to set the
appropriate baud rate.

Step 1: Defining the Optimal UARTxBR[15:0] Value

Use the following formula to set the UARTxBR[15:0]
register to the integer component of UARTxBRideal:

UARTXxBRigear = Fclk -1
32x (Baud Rate)

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R,W R/W R, W R
0 0 0 0 0 0 0 1
Bit Mnemonic Description
7 COLEN UART1 Collision Interrupt Enable

0 = Collision interrupt is deactivated
1 = Collision interrupt is enabled

6 RXOVEN UART1 RX Overrun Interrupt Enable
0 = RX Overrun interrupt is deactivated

1 = RX Overrun interrupt is enabled

5 RXAVAILEN UART1 RX Available Interrupt Enable
0 = RX Available interrupt is deactivated
1 = RX Available interrupt is enabled

Note that the baud rate will likely contain a fractional
component.

Valid UARTxBR[15:0] values range from 0x0000 to
OxFFFF.

Step 2: Defining the Optimal BRADJ[3:0] Value
Use the following formula to set the BRADJ[3:0]:

4 TXEMPTYEN UART1 TX Empty Interrupt Enable
0 = TX Empty interrupt is deactivated
1 = TX Empty interrupt is enabled

3 COLENF (Read) Collision Interrupt Flag
When this flag is set by the UART1 module, it

indicates that a collision has occurred

BRADJ[3:0] = ROUND[(UARTxBRideal — UARTxBR[15:0]) * 16]

(Write)

0 = Collision detection is disabled and the
collision COLENF is reset

1 = A bus collision stops the transmission and
raises the COLENF flag

2 RXOVF UART1 RX Overrun Flag
When set to 1 by the UART1 interface, it
indicates that a data collision has occurred in

the UARTOBUF register

The BRADJ[3:0] register can only contain an integer
value between 0x00 and 0xOF.

Step 3: Calculating the Error

The actual baud rate vs. the ideal baud rate can be
calculated using the following formula:

1 RXAVENF R: UART1 RX Available Flag

When set to 1 by the UARTO interface, it
indicates that data has been received in the
UART1BUF register. Will be automatically
cleared when UART1BUF is read

W: UART RX enable

Writing 1 into this bit position will activate
reception on UART1.

Clearing this bit 0 will deactivate the reception
on UARTO

Error %
= 100x [(Fclk /32*(UARTxBR[15:0]+BRADJ[3:0]/16 +1))-Baud Rate]
Baud Rate

0 TXEMPTYF UART1 TX Empty Flag
When set to 1, it indicates that the transmit
portion of the UART1BUF is ready to receive

another byte

In order to achieve reliable communication, the error
should be below 2 percent.

www.ramtron.com

page 51 of 114

VRS51L3174

rRAM RSN

The following table provides configuration examples
for typical baud rates when the internal 40MHz
oscillator is used:

TABLE 91: UARTS BAUD RATE CONFIGURATION EXAMPLES (SYS CLK =40MHz)

Com UARTxBR BRADJ Actual Error
Speed [15:0] [3:0] Baud Rate (%)
230400bps 0004h 07h 229885.1 -0.22
115200bps 0009h OEh 114942.5 -0.22
57600bps 0014h 0Bh 57636.9 0.06
38400bps 001Fh 09h 38387.7 -0.03
31250bps 0027h 00h 31250.0 0
28800bps 002Ah 06h 28818.4 0.06
19200bps 0040h 02h 19193.9 -0.03
9600bps 0081h 03h 9601.5 0.01
4800bps 0103h 07h 4799.6 -0.01
2400bps 0207h 0Dh 2400.1 0
1200bps 0410h 0Bh 1200.0 0
300bps 1045h 0Bh 300.0 0

7.8 UARTO, Alternate Mapping

Upon reset, UARTO’'s RXD0O and TXDO signals are
mapped into pins P3.0 and P3.1, respectively. It is
possible to re-map the RXD0 and TXDO signals into
pins P2.4 and P2.3.

Bit 3 of the DEVIOMAP register (SFR E1h) controls
the mapping of the UARTO interface, as shown in the
following table:

TABLE 92: UARTO0 RXDO / TXDO PIN MAPPING

DEVIOMAP.3 Bit Value RXDO0 TXDO
Mapping mapping

0 (Reset) P3.0 P3.1

1 P2.4 P2.3

When alternate mapping for UARTO is used, the
UARTO will have priority over the PWM3 and PWM4
outputs.

7.9 UART1, Alternate Mapping

Upon reset, UART1’s RXD1 and TXD1 signal are
mapped into pins P1.2 and P1.3. There are no
alternate pin for UART1 on the VRS51L3174.

7.10 UART Example Program

Configuration of UARTO is essentially the same as
UART1

7.10.1 UART Echo and External Interrupt
Configuration

/. /]

1/ V3K_UARTO_Echo_RxInt_INTO_INT1_SDCC.c //
//. 1/

I

/I This program initialise the UARTO at 115200 (Running from 40MHz internal oscillator)
/1 It then transmit "UARTO Echo: Waiting for char on RXDO...or INTO\0" on TXDO.

// The UART, INTO and INT1 are configured and the program enters in infinite loop waiting
for an interrupt

/I As soon as a character is received it is transmitted back on TXDO

/I 1f INTO or INT1 is received the program transmit "EXT INTO received" or EXT INT1
received”

/I on TXDO depending on which interrupt was received.

/I While waiting for interrupts, the software toggle P4 every 10ms
//.

#include <VRS51L3174_SDCC.h>

1/ --- function prototypes

void txmitO(unsigned char charact);
void uartOconfig(void);

void delay(unsigned int);

code char msg[] = "UARTO Echo: Waiting for char on RXDO...or INTO / INT1...\0";
code char msgint0[] = "EXT INTO received";
code char msgint1[] = "EXT INT1 received";

//. //

i MAIN FUNCTION

/]. 1/

void main (void){
int cptr= 0x00;

/lgeneral purpose counter

PERIPHEN1 = 0x08;
PERIPHEN2 = 0x08;
P4PINCFG = 0x00;

//Enable UARTO
//Enable 10 Ports
//Configure P4 as output

uartOconfig(); //Configure Uart0
//-- Send "UARTO Echo: Waiting for char on RXDO...\0" on UARTO
dof

txmit0(msg[cptr++]);

Iwhile(msglcptr]!= "\0');

txmit0(13); //Send Carriage Return

txmit0(10); //Send Line Feed

//--Wait for Character on UARTO interrupt

/I Once a character is received, grab it and send it back
GENINTEN = 0x02; /ISet the PININTCFG bit before configuring
Ilthe INTO pin event. This will prevent receiving
/lan inadvertent INTO interrupt to be triggered
//at the moment INTO triggering event is
Ilconfigured as Rising edge

INTSRC1 = 0x03; /IINTO vector source = INTO, INT1 vector source = INT1

pin
IPINSENS1 = 0x03; //Set INTO, INT1 sensitive on edge(1) or Level(0)
IPININV1 = 0x00; //Set INTO, INT1 Pin sensitivity on Low Level/Inversion
INTEN1 = 0x23; //Enable INTO (bit0), INT1 (bit1) and UARTO (bit5) Interrupt

GENINTEN = 0x01; //[Enable Global interrupt
dof

P4 = ~P4;

delay(10);

Ywhile(1);

}/end of Main

[l 1l
//----- Interrupt INTO ------//
Jfrmmmmm e A

void INTOInterrupt(void) interrupt 0

/I-- Send "EXT INTO Received" on UARTO
char cptr = 0x00; //'Init cptr to pint to message beginning
INTEN1 = 0x00; /IDisable Interrupt

www.ramtron.com

page 52 of 114

VRS51L3174

rRAM RSN

do{
B = msgintO[cptr++];
txmit0(B);
}while(msgintO[cptr]!= "\0');

txmit0(13); //Send Carriage Return
txmit0(10); /ISend Line Feed

INTEN1 = 0x23; /[Enable UARTO Interrupt + INTO + INT1
Ylend of INTO interrupt

/l----- Interrupt INT1 -

/R

void INT1Interrupt(void) interrupt 1

{
char cptr = 0x00; /I Init cptr to pint to message beginning
INTEN1 = 0x00; //Disable Interrupt
/I-- Send "EXT INT1 Received" on UARTO
do{
B = msgint1[cptr++];
txmit0(B);
twhile(msgint1[cptr]!= "\0');
txmit0(13); //Send Carriage Return
txmit0(10); /ISend Line Feed
INTEN1 = 0x23; /IEnable UARTO Interrupt + INTO + INT1

Ylend of INTO interrupt

1]. 1/
//--- UARTO Interrupt --------//
1/- //
void UARTOInterrupt(void) interrupt 5

char genvar;
INTEN1 = 0x00; //Disable UARTO Interrupt

/ICheck if interrupt was caused by RX AVAIL
genvar = UARTOINT;

if(genvar & 0x02)
txmitO(UARTOBUF); //Send back the received character

/ICheck if interrupt was caused by RX OVERRUN

if(genvar &= 0x04)
/IRead SOBUF to clear RX OV condition...
/***This is mandatory because otherwise

/lthe RX OV condition keep
/linterrupt activated

genvar = UARTOBUF;

txmit0(" '); //Send " OV!" on serial port
txmit0('0"); "
txmito('V'); "
txmit0('!"); I

lif(genvar &= 0x04)

INTEN1 = 0x23; //[Enable UARTO Interrupt + INTO + INT1
Ylend of uart0 interrupt

[[-=======---=----- Individual Functions ---------=--===------

1 /]

/' UARTO CONFIG
n

/I Configure the UARTO to operate in RS232 mode at 115200bps.
/I VRS51L2070 running from the internal 40MHz oscillator
"

//- //
void uartOconfig()

{
//-initialize UARTO at 115200bps @ 40MHz

UARTOCFG = 0xEOQ; /IFine adjustment on baud rate
/IUse internal clock
//9th bit not used
/lonly one stop bit

UARTOINT = 0x62; //[Enable RX AV + RXO V int + Enable Reception
UARTOEXT = 0x00; /INot using UARTO Extensions
UARTOBRL = 0x09; //Reload value for 115200

UARTOBRH = 0x00;
Ylend of uartOwsOrelcfg() function

/I TXMITO

1

/I Transmit one byte on the UARTO
1/-

void txmitO(unsigned char charact){
UARTOBUF = charact; //Send Character
while('(UARTOINT & 0x01));

}/end of txmit0() function

11

/I;- DELAY1MSTO : 1MS DELAY USING TIMERO
1,
void delay(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

PERIPHENT1 |= 0x01; //IENABLE TIMER 0

dlaisloop = dlais;
while (dlaisloop > 0)

{

THO = 0x63; /ITIMERO RELOAD VALUE FOR 1MS AT 40MHZ
TLO = 0xCO;

TOT1CLKCFG = 0x00; /INO PRESCALER FOR TIMER 0 CLOCK
TOCON = 0x04; /ISTART TIMER 0, COUNT UP

dof
TOCON &= 0x80;
Ywhile(x==0);

TOCON = 0x00; //Stop Timer O
dlaisloop = dlaisloop-1;

Ylend of while dlaisloop...
PERIPHEN1 &= OXFE; /IDISABLE TIMER 0

Y/End of function delay

www.ramtron.com

page 53 of 114

VRS51L3174

rRAM RSN

8 SPI Interface

The SPI interface of the VRS51L3174’s provides
numerous enhancements compared to other vendor
offerings. The SPI interface’s key features include:

e Supports four standard SPI modes (clock
phase/polarity)

Operates in master and slave modes
Automatic control of up to four chip select lines
Configurable transaction size (1 to 32 bits)
Transaction size of >32 bits is possible
Double Rx and TX data buffers

Configurable MSB or LSB first transaction
Generation frame select/load signals

FIGURE 20: SPIINTERFACE OVERVIEW

VRS51L3074 SPI Serial Data IN
INTERFACE SDI —
SPI SFRs
Serial Data OUT
sb0 b—m
Serial Clock IN/OUT
SCK 40—
J— Chip Select Output
CS80 p————————— ToSlave Device #1
R Chip Select Output
C81 |———————————» To Slave Device #2
N Chip Select Qutput
C82 |——————— To Slave Device #3
Processor i
gsg | ChipSelect Oulput | 1o \ave Device #4
SPI IRQs
— Sl Select | t
S8 e seed From Master Device

Before the SPIl can be accessed it must first be
enabled by setting the SPIEN bit of the PERIPHEN1
register to 1.

8.1 SPI Control Registers

The SPICTRL register controls the operating modes of
the SPI interface in master mode.

TABLE 93:SPI CoNTROL REGISTER - SPICTRL SFR C1H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW
0 0 0 0 0 0 0 1
Bit Mnemonic Description

75 SPICLKJ[2:0] SPI Communication Speed (Master Mode)
000 =Sys Clk/2 (/8if SPISLOW =1)

001 =Sys Clk/4 (/16 if SPISLOW = 1)

010 =Sys Clk /8 (/32 if SPISLOW = 1)

011 =Sys Clk/ 16 (/64 if SPISLOW = 1)
100 = Sys Clk / 32 (/ 128 if SPISLOW = 1)
101 = Sys Clk / 64 (/ 256 if SPISLOW = 1)
110 = Sys Clk / 128 (/512 if SPISLOW = 1)
111 = Sys Clk / 256 (/1024 if SPISLOW = 1)

4 SPICS[1:0] SPI Active Chip Select Line (Master Mode)
00 = CSO0 is active
01 = CS1 is active
10 = CS2 is active

11 = CS3 is active

2 SPICLKPH SPI Clock Phase

0 = SDO output on rising edge and SDI
sampling on falling edge

1= SDO output on falling edge and SDI sampling
on rising edge

1 SPICLKPOL SPI Clock Polarity
0 = SCK stays at 0 when SPI is inactive

1 = SCK stays at 1 when SPI is inactive

0 SPIMASTER SPI Master Mode Enable
0 = SPI operates in slave mode
1 = SPI operate in master mode (default)

When the SPIMASTER bit is set to 1, the SPI interface
operates in master mode. This is the default operating
mode of the VRS51L3174 SPI interface after reset.

8.2 Setting Up Clock Phase and Polarity

The clock phase and polarity is controlled by the
SPICLKPH and SPICLKPOL bits, respectively. The
following diagrams show the communication timing
associated with the clock phase and polarity.

SPI Mode 0:

FIGURE 21: SPI MopE 0

SPI MODE 0: SPICKPOL =0,SPICKPH =1 (Normal Mode Shown)

CSy

“Arrows indicate the edge where the data acquisition occurs

www.ramtron.com

page 54 of 114

VRS51L3174

rRAM RSN

SPI Mode 1:

FIGURE 22: SPIMobE 1

SPI MODE 1: SPICKPOL =0,SPICKPH =0 (Normal Mode Shown)

“Arrows indicate the edge where the data acquisition occurs

SPI Mode 2:

FIGURE 23: SPI MobE 2

SPI MODE 2: SPICKPOL =1,SPICKPH =1 (Normal Mode Shown)

CSx

st ittt | N

*Arrows indicate the edge where the data acquisition occurs

SPI Mode 3:

FIGURE 24: SPIMopE 3

SPI MODE 3: SPICKPOL =1,SPICKPH =0 (Normal Mode Shown)

CSx

*Arrows indicate the edge where the data acquisition occurs

8.3 Defining active chip select line

As previously mentioned, only one chip select line is
activated when communicating with an external SPI
slave device. The SPICS bits of the SPICTRL register
are used to select which CS line will be activated
during the transfer.

Note that with the exception of the CSO line, the
SPICSEN bit of the PERIPHEN1 register must be set
to 1 in order for the SPI be able to control the SPI CS
lines.

8.4 Setting the SPI Communication
Speed (Master Mode)

In master mode, the SPI interface communication
speed is adjustable from “system clock /2” down to
“system clock / 1024”. Slower communication speeds
can be useful for interfacing with slower devices or to
adjust the communication speed to specific bus
conditions.

The SPICLK[2:0] of the SPICTRL and the SPISLOW
bit of the of the SPICONFIG SFR register control the
SPI communication speed.

The SPI communication speed in master mode can be
calculated using the following formula:

SPI speed = S%s Clk

Where:

o Sys Clk = Processor operating clock
o SPISLOW = can be either 0 or 1
o SPICLK[2:0]=fromOQto 7

The following tables provide example setting for SPI
communication speeds with various system clock and
SPICLK][2:0] and SPISLOW bit settings.

TABLE 94:SPI COMMUNICATION SPEED EXAMPLE (SPISLOW =0)

SPICLK | Com Speed | Com Speed | Com Speed
@ 40MHz @ 22.18MHz @ 4MHz

000 20 MHz 11.05 MHz 2 MHz
001 10 MHz 5.53 MHz 1 MHz
010 5 MHz 2.76 MHz 500 kHz
011 2.5 MHz 1.38 MHz 250 kHz
100 1.25 MHz 691.2 kHz 125 kHz
101 625 kHz 345.6 kHz 62.5 kHz
110 312.5kHz 172.8 kHz 31.3 kHz
111 156.3 kHz 86.4 kHz 15.6 kHz
TABLE 95:SP1 COMMUNICATION SPEED EXAMPLE (SPISLOW =1)

SPICLK | Com Speed | Com Speed | Com Speed

@ 40MHz @ 22.18MHz | @ 4MHz

000 5 MHz 2.76 MHz 500 kHz
001 2.50 MHz 1.38 MHz 250 kHz
010 1.25 MHz 691.2 kHz 125 kHz
011 625 kHz 345.6 kHz 62.5 kHz
100 312.5kHz 172.8 kHz 31.3 kHz
101 156.3 kHz 86.4 kHz 15.6 kHz
110 78.1 kHz 43.2 kHz 7.8 kHz
111 39.1 kHz 21.6 kHz 3.9kHz

www.ramtron.com

page 55 of 114

VRS51L3174

rRAM RSN

8.5 SPI Configuration and
Status Registers

The SPI configuration and status registers allow the
activation and the monitoring of the SPI interface
interrupts. They also provide access to the advanced
features of the SPI interface such as:

o Frame select/load generation on CS3

o Activating manual control of the chip select

lines

o Bit reversed mode (Bitwise Endian Control)

o Interrupt activation and monitoring

o Monitoring the state of the SS pin

TABLE 96:SPI CONFIGURATION REGISTER - SPICONFIG - C2H

7 6 5 4 3 2 1 0
RIW W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 SPIMANCS SPI Manual CS Mode Enable

0 = SPI Chip select control is fully automatic

1 = SPI Chip select will be brought low by the
SPI interface, and will stay low until 0 is written
into SPIMANCS bit

6 SPIUNDERC SPI Clear TX Underrun Flag (SPIUNDERF)
Writing a 1 into this bit will clear the SPIUNDER
bit of the SPISTATUS register

This bit always reads 0

5 FSONCS3 Frame Select Pulse on CS3

0 = CS3 acts in standard ways

1 = The SPI interface will send an active low
frame select pulse on CS3

Frame select has priority on SPILOAD function

4 SPILOADCS3 | Load Pulse on CS3

0 = CS3 acts in standard way or as frame select
pulse, if FSONCS3 is set to 1

1 = The SPI interface sends an active low load
pulse on the CS3 pin, if FSONCS3 is cleared

3 SPISLOW SPI Slow Speed mode
0 = SPI transaction occurs at normal speed

1 = SPI transaction is 4x slower

2 SPIRXOVEN SPI RX Overrun Interrupt Enable
0 = SPI RX overrun interrupt is deactivated
1 = SPI RX overrun interrupt is enabled

1 SPIRXAVEN SPI RX Available Interrupt Enable
0 = SPI RX available interrupt is deactivated
1 = SPI RX available interrupt is enabled

0 SPITXEEN SPI TX Empty Interrupt Enable
0 = SPI TX empty interrupt is deactivated

1 = SPI TX empty interrupt is enabled

The SPISTATUS register's role is mainly for
monitoring purposes.

TABLE 97:SPI STATUS REGISTER - SPISTATUS SFR C9H

7 6 5 4 3 2 1 0
RIW R R R R R R R
0 0 0 1 1 0 0 1
Bit Mnemonic Description
7 SPI Reverse Mode

SPIREVERSE 0 = SPI operates in normal mode (MSB First)
1 = SPI operates in reverse mode (LSB First)

Not used

5 SPIUNDERF SPI TX Underrun Flag

0 = No underrun condition noticed

1 = Indicates that the SPI transmit buffer has
not been fed in time. This condition is likely to
occur when the Transaction size is > 32 bits
This bit is cleared by setting to 1, the
SPICLRTXF bit of the SPICTRL bit of the
SPICONFIG register

4 SSPINVAL Slave Select Pin Value
0 =SS pin is low

1 =SS pin is high

3 SPINOCS SPI No Chip Select
0 = At least one chip select line is active
1 = Indicates that all the chip select lines are

inactive (high)

2 SPIRXOVF SPI RX Overrun InterruptFlag
0 = No SPI RX Overrun condition detected

1 = SPI Data collision occurred

1 SPIRXAVF SPI RX Available Interrupt Flag
0 = SPI receive buffer is empty

1 = Data is present in the SPI RX buffer

0 SPITXEMPF SPI TX Empty Interrupt Flag

0 = SPI transmit buffer is full

1 = SPI transmit buffer is ready to receive new
data

8.6 SPI Transaction Directions

The SPI interface can perform transactions in the
standard SPI format (MSB first) as well as in the
reverse format (LSB first). In applications where data
must be transmitted (or received) in LSB first format,
the user would normally need to perform bit reversal
manually at the processor level and then send the data
through the SPI interface. The SPI interface can
automatically handle the bit reversal operations,
unloading the processor for other tasks.

When the SPIREVERSE bit of the SPISTATUS
register is set to 0, the SPI transactions will take place
in MSB first format.

www.ramtron.com

page 56 of 114

VRS51L3174

rRAM RSN

The following examples show the timing related to
these transaction directions:

FIGURE 25: SPI MSB FIRST TRANSACTION

MSB First SPI Transaction (Mode 0 Shown)
CSy

sox [LT LT LIL

PROBD! o XX <X X

When the SPIREVERSE is set to 1, the SPI
transactions are done in LSB first format, as shown in
the next figure.

FIGURE 26: SPILSB FIRST TRANSACTION

LSB First SPI Transaction (Mode 0 Shown)
Csy

SCK /

PROSEL oo XX A< X Xy

8.7 Manual Chip Select Control

When the SPIMANCS bit of the SPICONFIG register is
set to 1, the active chip select line will stay at a logic
low after the SPI master mode transaction is
completed, as shown in the following figure.

FIGURE 27: SPI MANUAL CHIP SELECT

Manual CSx Mode (sPi Mode 0 shown)

Note: CSx Stays Low.
C& ~

8.8 SPl Interrupts

The SPI can trigger three interrupt sources that are
handled by two interrupt vectors, as shown in the
following table:

TABLE 98: SPI INTERRUPT SOURCES

Interrupt Interrupt Interrupt
Number Vector

SPI TX Empty Int 1 000Bh

SPI RX Available

SPIRX Overrun Int_2 0013

SCK

[R W
0 X X X OO oK y———
SDI Pr i iyt Pt

*Arrows indicate the edge where the data acquisition occurs

The chip select will remain at logic 0 until the
SPIMANCS bit is cleared by the software.

The TX empty interrupt is set when the SPI transmit
buffer is ready to receive more data. A double buffer is
used in the SPI transmitter. Once transmission begins
(after a write to the SPIRXTXO register), the data is
transferred to the final transmission buffer. This frees
up the SPIRXTX SFR register, raises the SPITXEMPF
flag of the status register and triggers an SPI TX empty
interrupt if enabled. The SPI TX empty interrupt is
enabled by setting the SPITXEEN bit of the
SPICONFIG register to 1.

The priority of the SPI TX empty interrupt is set high in
order to avoid buffer overrun in 32-bit SPI transfers.

The SPI RX available interrupt is activated when
receive data has been transferred from the SPI RX
buffer to the SPIRXTX register. The SPIRXTX register
must be read by the processor before the next SPI bus
data sequence is completed. The SPI RX available
interrupt is enabled by setting the SPIRXAVEN bit of
the SPICONFIG register to 1. The SPIRXAVF flag of
the SPISTATUS register, when set to 1, indicates that
data can be read. The SPIRXAVF flag is automatically
reset when the SPIRXTXO register is read.

The SPI RX overrun interrupt indicates that an overrun
condition has taken place. The SPI RX overrun
interrupt is enabled by setting the SPIRXOVEN bit of
the SPICONFIG register to 1. The SPIRXOVF flag of
the SPISTATUS register, when set to 1, indicates that
a data collision has occurred.

All the SPI interface interrupt flags are active even if
the associated interrupt is not activated and they can
be monitored by the user program at any time.

Please consult the Interrupt Section for more details on
the SPI interface interrupts and their interaction with
other peripherals

www.ramtron.com

page 57 of 114

VRS51L3174

rRAM RSN

8.9 Alternate CS3 functions

For external SPI devices which require the use of a
load or a frame select signal, the VRS51L3174 can be
configured to either generate an active low frame
select or active high load signal when operating in
master mode.

8.9.1 Frame Select signal on CS3

When the FONCS3 bit of the SPICONFIG register is
set to 1, the SPI interface will generate an active low
frame select pulse on the CS3 pin (see the following
timing diagram).

FIGURE 28: SPIFRAME SELECT PULSE TIMING

FRAME SELECT Pulse (spi Mode 0 shown)

CS3

/rame Select Pulse width = 1/ Sys Clk
-

C&

SCK /

sttt o, t iy

“Arrows indicate the edge where the data acquisition occurs

8.9.2 Load Signal on CS3

When the SPILOADCSS3 bit of the SPICONFIG register
is set to 1 and the FSONCS3 bit is cleared, an active
low load signal will be generated on the CS3 line of the
SPI interface.

FIGURE 29: SPILoAD PuLse TIMING

LOAD Pulse (sPi Mode 0 shown)

CS3 ad Pulse width = 1/ Sys Clk U
o e wi ys
\> -

C&

SCK /

s bttty t oty

“Arrows indicate the edge where the data acquisition occurs

Note that the frame select alternate function has
priority over the load function. This means that if the
FSONCS3 bit is set, the alternate function selected
will be the frame select, independent of the value of
the SPILOAD bit.

8.10 SPI Activity Monitoring

The ability to monitor the state of communication of the
SPI interface can be wuseful in highly modular
applications in which the SPI interface is handled by
interrupts. The SPISTATUS register contains two flags
that can be used to monitor the CS and SS signals of
the SPI interface.

The SPINOCS bit of the SPISTATUS register returns
the logical AND of all the SPlI CS lines of the
VRS51L3174. If all the CS lines are inactive (logic
high), the SPI interface sets the SPINOCS to 1. The
SPINOCS bit is used to verify that the SPI interface is
idle before reconfiguring it or starting a new
transaction.

The SPINOCS bit of the SPISTATUS register is valid
four system clock cycles after the SPI transmission
begins. This delay is independent of the SPI
transaction speed.

As such, after a write operation to the SPIRXTX0
register, which will trigger a SPI transaction in master
mode, a NOP instruction (1 cycle) must be added
before the MOV Rn, SPISTATUS instruction (3
cycles).

The SSPINVAL bit of the SPISTATUS register returns
the logic level on the SS pin.

8.11 SPI TX Under Run Flag

The SPI interface provides an under run condition flag
that can be used to flag whether the software has
failed to update transmission buffer in time for the next
transfer. This is especially useful when the SPI
interface is used to transmit packets greater than 32
bits in length.

If an under run condition occurs, the SPIUNDERF bit
of the SPI status register will be set to 1. This bit can
be cleared by writing a 1 to the SPIUNDERC bit of the
SPICONFIG register.

Note that SPI under run monitoring is not linked to any
of the SPI interrupts, therefore, this flag can only be v
manually by software

www.ramtron.com

page 58 of 114

VRS51L3174

rRAM RSN

8.12 SPI Transaction Size

The standard SPI protocol is based on 8-bit
transactions. However, many devices on the market,
specifically A/D and D/A converters, require
transactions greater than 8 bits. To communicate with
these types of devices using a standard SPI interface,
the user has no choice but to send multiple 8-bit
streams and use /O pins to control the chip select line.

The VRS51L3174 SPI interface supports 8-bit
transactions and can also be configured to support
transactions from 1 to 32 bits in both transmit and
receive directions. The value written into the SPISIZE
register controls the transaction size. Upon reset, the
SPl interface is configured for 8-bit transactions.

The SPI interface does also support transaction of
more than 32 bit in size. For transaction > 32bit in size
the granularity is 8 bit and the maximum transaction
size is 228 bytes.

Care must be taken to avoid SPI double data buffer
over / under run condition when transaction size is >
32 bit.

TABLE 99:SPI TRANSACTION SizE — SPISIZE SFR C3H

Or it can be expressed by:

SPISIZE[7:0] = [Transaction Size + 216]
8

7 6 5 4 3 2 1 0
RIW RIW RW RW RW RW RW RW
0 0 0 0 0 1 1 1
Bit Mnemonic Description

7:0 SPISIZE[7:0] SPI transaction Size

If < 32 : Transaction Size = SPISIZE + 1

If >= 32: Transaction Size = (SPISIZE *8) - 216
Default Transaction Size = 8 bits

Four formulas control the SPI transaction size:

For Transactions Size <= 32 bits

Transaction Size = SPISIZE[7:0] +1

Or

SPISIZE[7:0] = Transaction Size - 1

For Transactions Size > 32 bits

Transaction Size = [(SPISIZE[7:0] * 8) —216]

The following table provides examples:
TABLE 100: TRANSACTION SIZE vs. SPISIZE[7:0]

SPISIZE[7:0] Transaction Size
0x07 8-bit
0x0B 12-bit
0x0D 14-bit
0x10 17-bit
0x17 24-bit
0x1F 32-bit
0x20 40-bit
0x21 48-bit
0x23 64-bit

The transaction size must also be configured when the
operating the SPI interface in slave mode.

8.13 SPI RX/TX Data Registers

Four SFR registers provide access to the SPI
interface’s receive and transmit data buffer.
Performing a write operation to the SPI RX/TX buffer
transfers the data to the transmit portion of the SPI
interface, while a read operation reads the contents of
the receive data buffer. The SPI 32-bit receive and
transmit data buffers are double buffered to minimize
the risk of data collision and to achieve optimal
performance.

The SPI RXTXO0 register contains bits 7:0 of the SPI
interface RX/TX register.

TABLE 101: SPIRXTXO0 REGISTER CONTENT FOR NORMAL AND REVERSED TRANSACTIONS

Operation SPI Mode SPIRXTXx Data is...

Read MSB First Right Justified
LSB First Left Justified

Write MSB First Left Justified
LSB First Right Justified

When the SPI is configured in master mode, writing to
the SPIRXTXO will trigger a data transmission. For this
reason, when the transaction size is larger than 8 bits,
the SPIRXTXO register must be written last.

www.ramtron.com

page 59 of 114

VRS51L3174 rRAMTRSON

TABLE 102:SPI RX / TX0 DATA REGISTER — SPIRXTX0 SFR C4H 8 14 SPI Data Input IOutput
7 6 5 4 3 2 1 0)
RSW RSW RQ’V RQ’V RGW RQ’V RQ’V RQN The VRS51L3174 SPI interface has the ability to

perform data transactions in MSB first mode or LSB
first. The SPIREVERSE bit of the SPISTATUS register

Bit Mnemonic Description - ! g
7:0 SPIRXTX0[7:0] | Read: SPIRXData[7:0] controls whether the data will be transmitted MBS first
Right justified in normal mode, left justified in bit or LSB first. Upon device reset, the SPIREVERSE bit
reversed mode . . T, .
Reading this register, clears the SPIAVF and equals 0 and data is transmitted in MSB first format.
SPIRXOVF flags) .
Write: The SPIREVERSE bit state will also affect the data
SPI TXData[7:0] if SPISIZE = 0x07 (8 bit) i i
SPITXData[31:24] f SPISIZE = Ox1F (32 bit) transm|.33|on and th_e da.ta reception buffer structure as
Left justified in normal mode, right justified in bit shown in the following diagrams.

reversed mode
In master mode, writing to SPIRXTXO triggers
the transmission

FIGURE 30: SPITRANSACTION STANDARD MopDE (SPIREVERSE =0 : MSB FIRsT)

Outgoing Transaction

SPI Transmission (standard Mode)

LSB MSB
H —_ SDO
TABLE 103:SPI RX / TX1 DATA REGISTER — SPIRXTX1 SFR C5H . . ‘7 — 3 ‘ - . []:DD:D
R/7W R/6W R‘/SW R?W R/3W R/ZW R;IW R/O\/V ‘ SPIRXTX3 ‘ ‘ SPIRXTX2 ‘ ‘ SPIRXTX1 ‘ ‘ SPIRXTX0 ‘
0 0 0 0 0 0 0 0

Bit Mnemonic | Description SP| Reception isiandar todel Incoming Transaction
7:0 SPIRXTX1[7:0] | Read: 7 0z 0 1 0 7 0 MsB LsB
SPI RXData[15:8] if SPISIZE = Ox1F (32 bit) ‘ SPIRXTX3 ‘H SPIRXTX2 M SPIRXTX1 M SPIRXTX0 }4— - []:]j ,,,,, [Dj

Right justified in normal mode, left justified in bit
reverse mode

Write: . i FIGURE 31: SPI TRANSACTION BIT REVERSE MODE (SPIREVERSE = 1: LSB FIRsT)
SPITXData[23:16] if SPISIZE = 0x1F (32 bit)
Left justified in normal mode, right justified in bit SPI Transmission (sit Reversed Mode

reverse mode Outgoing Transaction

TABLE 104:SPI RX/ TX2 DATA REGISTER — SPIRXTX2 SFR C6H _ Incoming Transaction
7 6 5 4 3 2 1 0 SPI Reception (Bit Reversed Mode) Ls8 sB
RW | RW | RW | RW | RW | RW | RW RIW ; o ()<« (-1 1]
0 0 O O O O 0 O ‘7SPIRXTX30‘ ‘7SPIRXTX20‘ ‘7SFIRXTX1O‘ ‘ SPIRXTXOO‘
t [|
Bit Mnemonic Description
7:0 SPIRXTX2[7:0] | Read: . L.
SPI RXData[23:16] if SPISIZE = 0x1F (32 bit) The next tables gives examples of SPI transmission
Right justfied in normal mode, left justiied in bit and reception in different modes if the SPI SDO pin is
Write- connected to the SDI pin.
SPITXData[15:8] if SPISIZE = 0x1F (32 bit)
Left justified in normal mode, right justified in bit - . - .
e SPISIZE = 0xOF (16 bit)/ SPIREVERSE= 0 (MSB First
SPITX [3:0] SPIRX [3:0]
TABLE 105:SPI RX/ TX3 DATA REGISTER — SPIRXTX3 SFR C7H | XX | XX | D3h | 42h | | XX | XX | 42h | D3h
7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0 | XX | XX | 54h | A6h | | XX | XX | A6h | 54h
Bit Mnemonic | Description SPISIZE = 0x0F (32 bit)/ SPIREVERSE= 0 (MSB First
7:0 SPIRXTX3[7:0] | Read: SPI RXData[31:24] . .
Right justified in normal mode, left justified in bit SPITX [3'0] SPIRX [3'0]
reverse mode [45h [Ash | B2h | DF | [DFh | B2h [A3h [45h
Write:
SPITXData[7:0] if SPISIZE = 0x1F (32 bit) | C3h | 8Ah | 49h | 24h | | 24h | 49h | 8Ah | C3h

Left justified in normal mode, right justified in bit
reverse mode

SPISIZE = 0x0F (32 bit)/ SPIREVERSE= 1 (LSB First

SPITX [3:0] SPIRX [3:0]
[45h [A3h [B2h [DF | [DFh [B2h [A3h [45h
[C3h [8Ah [49h [24h | [24h [49n [8Ah [C3h

www.ramtron.com page 60 of 114

VRS51L3174

rRAM RSN

8.14.1 Performing Variable-Bit Data
Transmission

For a variable-bit data transmission in master mode
(when the data is not transmitted in multiples of 8 bits),
the most significant bit of the data to be transmitted
must first be placed at position 7 of the SPIRXTXO,
with the remaining bits positioned as shown in the SPI
transaction figures on the previous page.

For example if SPISIZE = 0x0B and SPIREVERSE =
0, the data transaction will measure 12 bits, MSB first.
For the transmission to occur in the correct order, the
lower 4 data bits must first be placed into bit positions
7:4 of the SPIRXTX1 register, with bits 11:8 written
into bit position 7:0 of the SPIRXTXO register. This will
trigger the transmission.

The following is a sequence of steps to transmit 12 bits
of data contained in an integer variable called
txmitdata.

1. Clear the SPIRXTX3 and SPIRXTX2 registers
(optional)

2. Put the lower quartet of the 12-bit data (bits
3:0) into the upper quartet of the SPIRXTX1
register

3. Write bit 7:0 of the 12-bit data into the
SPIRXTXO register

4. This will trigger a data transmission

In C, this is expressed as follows:

(-.)
SPIRXTX3 = 0x00;
SPIRXTX2 = 0x00;
SPIRXTX1 = (txmitdata << 4)&0xFO; //\Write the lower quartet of data
/linto the upper quartet of SPIRXTX1 register

readflag = SPIRXTX0 //-Dummy Read the SPI RX buffer to clear the RXAV Flag

//(Facultative if SPINOCS is monitored)

SPIRXTXO0 = dacdata >> 4; //Writing to SPIRXTXO will trigger the transmission

For example to output 0x3A2 through the SPI interface
configured in master mode and MSB first format, write
0x20 into the SPIRXTX1 SFR register and followed by
0xAZ2 into the SPIRXTXO register.

The reception of non multiple of 8 data when the SPI
interface is configured to MSB first transaction is very
straight forward as the data enters into the receiving
buffer through the bit 0 of the SPIRXTXO register and
propagates towards the bit 7 of SPIRXTX3 register.

8.15 SPI Example Programs

8.15.1 UART to SPI Data Transmission
Example

/]. 1/
/I SPI Transmit example.c
/]

/I This program sends characters received on the UART to the SPI Interface
/].

#include <VRS51L3174_SDCC.h>
//----Global variables ------ 1l
int cptr = 0x00; /lgeneral purpose counter

/I --- function prototypes
void txmitO(unsigned char charact);
void uartOconfig(void);

/. //

/i Main Function
/I 7

void main (void){

char value = 0x00;
PERIPHEN1 = 0xCO;

/lgeneral purpose variable
//[Enable SPI Interface

INTCONFIG = 0x02; /l[Erase Bypass global int, before configuring the INTO pin
event
/[This fix inadvertent INTO interrupt that occurs when
//INTO cause is set to Rising edge

INTSRC1 = 0x01; /IINTO vector source = INTO pin

INTPINSENS1 = 0x01; /ISet INTO sensitive on edge(1) or Level(0)

INTPININV1 = 0x00; //Set INTO Pin sensitivity on Normal Level(0) / Inverted (1)

INTEN1 = 0x01; /[Enable INTO (bit0) Interrupt

INTCONFIG = 0x01; //[Enable Global interrupt
while(1);

}Y/lend of Main

/. /

l-mmmmmmmmemmeeeeeee———— |nterrupt Functions -—--------------mmmemmeeeemmeo 1l
1/- //
//. //
" Interrupt INTO 1"

1" Send character received on the SPI Interface I
/]. n

void INTOInterrupt(void) interrupt 0

{
/I-- Send "EXT INTO Received" on UARTO
cptr = 0x00; I/ Init cptr to pint to message beginning
INTEN1 = 0x00; /Disable Interrupts
SPICTRL = OxE1; /ISPI CLK = div by 256
/ISPI CSO0 Active
/ISPl Mode 0
/ISP1 Master

SPISIZE = 0x07,;
SPICONFIG = 0x10;
SPIRXTX0 = SOBUF;

/ISPI SIZE = 8bit
/ILOAD on CS3
//Send Data Byte on SPI Interface

INTEN1 = 0x01;
Ylend of INTO interrupt

//[Enable Interrupt INTO

www.ramtron.com

page 61 of 114

VRS51L3174

rRAM RSN

8.15.2 SPI Interface to 12-bit ADC and DAC

The following example program shows the initialization
and use of the VRS51L3174’s SPI module as an
interface to serial ADC and DAC.

//. /]

}/ VRS51L3174_Generic_SPI_based_ADC_DAC_Interf1.c
//-

// DESCRIPTION:

" This Program demonstrates the configuration and use of the SPI interface
" for interface to typical serial 12 bit A/D and D/A Converters.

I The program read the A/D and output the read value out on a D/A converter
I To perform the conversion the ADC requires 16 clock cycles and

1 the DAC requires 12 clock cycles.

1/

#include <VRS51L3174_SDCC.h>

/l---Functions prototypes
void ReadGEN_12BIT_ADC(void); /IGEN_12BIT_ADC Read
void WriteGEN_12BIT_DAC(unsigned int); /IGEN_12_BIT_DAC Write

void V2KDelay1ms(unsigned int); //Standard Delay function
/I Global variables definitions

idata unsigned char cptr = 0x00;
unsigned int at 0x0060 adcdata= 0x00;

1 /]

I MAIN FUNCTION

//- //
void main (void) {

dof
ReadGEN_12BIT_ADC(); //IRead the A/D Converter
WriteGEN_12BIT_DAC(adcdata); /Iwrite into the D/A Converter
Jwhile(1);

Y/ End of main

1 /]

/I NAME: ReadGEN_12BIT_ADC
//- //
/| DESCRIPTION:
Read the GEN_12BIT_ADC A/D
" ADC is connected to SPI interface using CS0
A Max clk speed is 3.2MHz, Fosc = 40MHz assumed
1]. n

void ReadGEN_12BIT_ADC()

{
int cptr = 0x00;
char readflag = 0x00;

/ISPI Configuration Section
/l(Can be moved to Main function if only one device is connected to the SPI Interface)

/IMake sure the SPI Interface is activated
PERIPHEN1 |= 0xCO;

/I--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS &= 0x08));
SPICTRL = 0x65; /ISPICLK = /16 (2.5MHz)

//CS0 Active

/ISPI Mode 1 Phase =1, POL =0
/ISP Master Mode

SPICONFIG = 0x40; /ISPI Chip select is automatic

/IClear SPIUNDEFC Flag

/ISPILOAD = 0 -> Manual CS3 behaviour
//No SPI Interrupt used

SPISTATUS = 0x00; /ISPI transactions are in MSB First Format

SPISIZE = OxOE; /ISPI Transaction Size are 15 bit
/l-Dummy Read the SPI RX buffer to clear the RXAV Flag
readflag = SPIRXTXO0;
/I-Perform the SPI read
SPIRXTXO0 = 0x00; //Writing to the SPIRXTXO0 will trigger the SPI
/[Transaction
while(!(SPISTATUS &= 0x02)); /IWait for the SPI RX AV Flag being set
*
/I - It is possible to monitor the SPINOCS Flag instead of the SPIRXAV Flag
/[The code piece below shows how to do it. However in that case,
/INo that the reading of the SPISTATUS register must be done at

/lleast 4 System clock cycles after the Write operation to the SPIRXTXO register

/l-Wait for SPINOCS Flag have time to be updated
_asm

NOP;
_endasm;
while(/(SPISTATUS &= 0x08)); /IWait activity stops on the SPI interface
*
/IRead SPI data
adcdata= (SPIRXTX1 << 8);
adcdata+= SPIRXTXO;
adcdata&= 0xOFFF;
Ylend of ReadGEN_12BIT_ADC

/lisolate the 12 Isb of the read value

I I
/I NAME: WriteGEN_12BIT_DAC
/]

/I DESCRIPTION:
Write 12bit Data into the GEN_12BIT_DAC device

! ADC is connected to SPI interface using CS1
" Max clk speed is 12.5MHz, Fosc = 40MHz assumed
" We will set the SPI prescaler to sysclk / 8

1/- //
void WriteGEN_12BIT_DAC(unsigned int dacdata)

{

char subdata = 0x00;
char readflag = 0x00;
PERIPHEN1 |= 0xCO; //IMake sure the SPI Interface is activated
//--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS &= 0x08));

//SPI Configuration Section

//Can be moved to Main function if only one device is connected to the SPI Interface
SPICTRL = 0x4D; /ISPICLK = /8 (MHz)

/ICS1 Active

/ISPI Mode 1 Phase =1, POL =0
/ISPI Master Mode

SPICONFIG = 0x40; /ISPI Chip select is automatic

/IClear SPIUNDEFC Flag

/ISPILOAD = 0 -> Manual CS3 behaviour
/INo SPI Interrupt used

SPISTATUS = 0x00;
SPISIZE = 0x0B;

/ISPI transactions are in MSB First Format
/ISPI Transaction Size are 12 bit

//-Format the 12 bit data so data bit 11 is positioned on bit 7 of SPIRXTX0

// and data bit 0 is positioned on bit 4 of SPIRXTX1 and Perform the SPI write operation
dacdata &= OxOFFF; //Make sure dacdata is <= OFFFh (12 bit)
SPIRXTX3 = 0x00;

SPIRXTX2 = 0x00;

SPIRXTX1 = (dacdata << 4)&0xFO0;

/I-Dummy Read the SPI RX buffer to clear the RXAV Flag
/I (Facultative if SPINOCS is monitored)

readflag = SPIRXTXO0;
SPIRXTXO0 = dacdata >> 4; /IWriting to SPIRXTXO will trigger the transmission
//--Wait the SPI transaction completes

/I This section can be omitted if a check of activity on the SPI Interface

/I is made before each access to it in master mode

/\Wait for the SPI RX AV Flag being set
while(!(SPISTATUS &= 0x02));

/I -- 1t is possible to monitor the SPINOCS Flag instead of the SPIRXAV Flag
/[The code piece below shows how to do it. However in that case,
/INo that the reading of the SPISTATUS register must be done at
Illeast 4 System clock cycles after the Write operation to the SPIRXTXO register

7

/l-Wait for SPINOCS Flag have time to be updated

_asm

NOP;

_endasm;

//--Wait activity stops on the SPI interface (monitor SPINOCS Flag)

while(/(SPISTATUS &= 0x08));

*/

Ylend of WriteGEN_12BIT_DAC

www.ramtron.com

page 62 of 114

VRS51L3174

rRAM RSN

8.15.3 Performing > 32bit Data Transfer on SPI

The following demo program demonstrates the use of
the SPI interface to perform 131 bytes data transfer
Read / Write on the SPI interface.
//

/I V2K_SPI_131BComm_FM25CL64_SDCC.c
/].

// DESCRIPTION:

/I This Program demonstrates the configuration and use of the SPI interface
/I to access the FM25CL64. This demonstration program takes advantage of the
/I ability to perform > 32bit transactions.

/I In this demo program, transactions of 131 bytes are performed

"

/I The program do the following operations

A 1) Initialize the SPI interface

" 2) Init XRAM address 0x0000 - 0x007F with LSB of XRAM address

" 3) Init XRAM address 0x0080 to OxOFFF == 0x00

I 4) Send a WREN command

I 5) Copy XRAM address 0x0000 to 0x007F into address 0x0000 to 0x00F

" of the FM25CL64 in one SPI Transaction

A 6) Read FM25CL64 address 0x0000 to 0x007F of the FM25CL64 and copy
" the data read into XRAM from addres 0x0100 to 0x017F

I in one SPI Transaction (by pooling)

" 7) Read back address 0115h
1/- //

#include <VRS51L3174_SDCC.h>

//--Init pointer to XRAM base address

xdata at 0x0000 unsigned char xrambase; /lInit a char variable pointing to XRAM

xdata unsigned char * data xramptr = &rambase ; //Init a pointer in IRAM pointing to the
/Ixrambase var.

//. /]

I MAIN FUNCTION
1]. n
void main (void) {

char readflag = 0x00;

char count;

/ISPI Configuration Section
PERIPHEN1 |= 0xCO; I/Activate the SPI Interface
/I--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS & 0x08));

readflag = SPIRXTXO0;
SPICTRL = 0x85;

/IDummy Read to clear the RXAV Flag
/ISPICLK = Fosc/32 (1.25MHz)

/ICS3 Active

/ISPI Mode 0 Phase =1, POL =0
/ISP Master Mode

SPICONFIG = 0x40; //SPI Chip select is automatic
/[Clear SPIUNDEFC Flag
//No SPI Interrupt used

SPISTATUS = 0x00; //SPI transactions -> MSB First Format

//.

/I Init XRAM address 0x0000 to 0x07F == LSB of address

/I Init XRAM address 0x0080 to OxOFFF == 0x00
1/-

xramptr = &rambase; /nit xramptr

/I Init XRAM address 0x0000 to 0x07F == LSB of address
do{
*xramptr = (char) xramptr;
xramptr++;
twhile(xramptr < 0x80);

/I'Init XRAM address 0x0080 to OxOFFF == 0x00
do{

*xramptr = 0x00;

xramptr++;

Iwhile(xramptr < 0x1000);

1]. n
/I Send the WREN command to the FM25CL64

1/-
/IFirst, Send a WREN command to the FM25CL64

readflag = SPIRXTXO0; //Dummy Read to clear the RXAV Flag
SPISIZE = 0x07; /ISPI Transaction Size is 8 bit
SPIRXTXO0 = 0x06; /IWREN command

/I--Wait activity stops on the SPI interface (Monitor SPINOCS)
_asm; //SPINOCS require 4 cycles before sampling

NOP;

NOP;

NOP;

NOP;
endasm;

Vvhile(!(SPISTATUS & 0x08)); //Wait for SPINOCS to go high

/. //

/I Write 129 bytes into the FM25CL64 in one SPI Transaction (by pooling)
/]

//
/I--Get ready to copy 5 bytes to FM25CL64
xramptr = &xrambase; //Init pointer to XRAM to retrieve data to
Ilbe written into FRAM

//IDummy Read to clear the RXAV Flag
/[Transaction Size 8 bytes total

readflag = SPIRXTXO0;
SPISIZE = 0x9E;

/I--Fill the 32bit SPIRXTX Buffer
SPIRXTX3 = *xramptr++;
SPIRXTX2 = 0x00;

SPIRXTX1 = 0x00;

SPIRXTXO0 = 0x02;

/I\Write First data byte

/ISet LSB of FM25CL64 Address

//Set MSB of FM25CL64 Address
//Write memory command -> this start
/lthe transaction

//Wait for the SPI TXEMPTY Flag to get set before sending new data

do{
while(I(SPISTATUS & 0x01));

SPIRXTX3 = *(xramptr + 3); //Write next data bytes into SPI Tx buffer

SPIRXTX2 = *(xramptr + 2);

SPIRXTX1 = *(xramptr + 1); n

SPIRXTXO0 = *(xramptr); I

xramptr += 4; I/get ready for next data

Iwhile(xramptr < 0x83);

/I--Wait activity stops on the SPI interface (Monitor SPINOCS)
_asm; //SPINOCS require at least 4 cycles to be sampled
NOP;
NOP;
NOP;
NOP;

endasm;

Wwhile(/(SPISTATUS & 0x08)); //Wait for SPINOCS to go high

//. //
/I Read 128 bytes from the FM25CL64 in one SPI Transaction (by pooling)
1/-

/ISPI Configuration Section
readflag = SPIRXTXO0; //Dummy Read to clear the RXAV &
/IRXOV Flags if set

SPISIZE = 0x9E; //Set SPISIZE[7:0] for 8 bytes total

xramptr = (&xrambase + 0x100); //Set pointer to XRAM

//--Fill the 32bit SPIRXTX Buffer

SPIRXTX3 = 0x00; /i

SPIRXTX2 = 0x00 /ISet LSB of FM25CL64 Address

SPIRXTX1 = 0x00; /ISet MSB of FM25CL64 Address

SPIRXTX0 = 0x03 /IREAD command-> this start
Iithe transaction

//Wait for the SPI RX AV Flag to be set -> RX buffer full

while(!(SPISTATUS & 0x02));

*xramptr++ = SPIRXTXO; /IRead the first Data Byte

/ffrom FM25CL64

/IRetrieve the next 124 Data bytes stored into the FM25CL64

do

{

//Wait for the SPI RX AV Flag being set -> RX buffer full
while(!(SPISTATUS & 0x02));

*xramptr++ = SPIRXTX3;

*xramptr++ = SPIRXTX2;

*xramptr++ = SPIRXTX1;

*xramptr++ = SPIRXTXO;

}while(xramptr < 0x017D);

I/ retrieve last 3 bytes...

while(!(SPISTATUS & 0x02));
*xramptr++ = SPIRXTX2;
*xramptr++ = SPIRXTX1;
*xramptr++ = SPIRXTXO;
while(1);
Y/ End of main

www.ramtron.com

page 63 of 114

VRS51L3174

rRAM RSN

9 I2C Interface

The VRS51L3174 includes an I?C interface that can
operate in master and slave mode. In master mode,
the communication speed on the I2C is programmable,
optimizing communication between 1°C-based devices.
Long or heavily loaded I>)C bus applications are likely
to require slower communication speeds.

9.1 I?C Bus Pull-Up Resistors

By definition, the I1°C requires that the user include
external pull-up resistors on the SCL and SDA lines.
The pull-up voltage can be either 3.3 or 5 volts. Note
that the VRS51L3174 1/Os are 5V-tolerant, making it
possible to interface 5V, I1°C-based devices with the
VRS51L3174.

The proper value for the pull-up resistor and the proper
communication speed depend on bus characteristics
such as length and capacitive load.

Note that the pull-up resistor value should not be
below 1.25K ohms if running the I?)C bus at 5V; and
750 ohms if operating at 3.3V. This is required in
order to limit the current to 4mA (maximum current of
the 1/0 port connected to the I2C interface).

9.2 I?C Interface alternate pins

Upon reset, the I12C interface signal SCL and SDA are
mapped into pins P3.4 and P3.5, respectively.
However it is also possible to map these signal into the
P1.6 and P1.7 pins.

Bit 5 of the DEVIOMAP register (SFR E1h) is used to
configure the mapping of the I?C interface at the 1/O
level, as shown in the following table:

TABLE 106: I°C MODULE MAPPING

DEVIOMAP.5 Bit Value SCL SDA
Mapping Mapping

0 (Reset) P3.4 P3.5

1 P1.6 P1.7

9.3 I*C Control and Status Registers

Four SFR registers are dedicated to the I*C interface.
The I1>C configuration register I2CCONFIG enables:

e Selection of master or slave operation

e Forcing a start condition after an acknowledge
phase

e Manual control of the SCL line

e Activation of the master arbitration monitoring
mechanism

e Interrupt activation

TABLE 107:12C CONFIGURATION REGISTER -12CCONFIG SFR D1H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW R/W RW
0 0 0 0 0 1 0 0
Bit Mnemonic Description
7 MASTRARB Master Lost Arbitration and Mechanism and
Interrupt

0 = Deactivated
1 = Master lost arbitration monitoring and
interrupt is enabled

6 I2CRXOVEN I2C RX Overrun Interrupt Enable
0 = I)C RX Overrun interrupt is deactivated
1 = 1>)C RX Overrun interrupt is enabled

5 12CRXAVEN I12C RX Available Interrupt Enable
0 = I)C RX Available interrupt is deactivated
1 = I2C RX Available interrupt is enabled

4 12CTXEEN I12C TX Empty Interrupt Enable
0 = I>C TX empty interrupt is deactivated

1 =I1*C TX empty interrupt is enabled

3 I2CMASTART 12C Master Create Start

0 = No start condition is created after data
acknowledge phase

1 = Master will create a start condition after the
next data acknowledge phase

This bit will be cleared when the I>C is idle

2 12CSCLLOW Keep the I)C SCL Low

Setting this bit to 1 will force the SCL line low.
This bit is read by the IC interface when it
enters in the data I°C.

This bit must not be set during the acknowledge
phase.

1 I2CRXSTOP 12C Reception Stop

0 = The I?C received will acknowledge after
receiving the next data byte

1 = The I?C receiver will not acknowledge after
the next data byte is received

0 12CMODE I12C Mode Enable

0 = I?C interface operates in slave mode

1 = I>C Interface operates in master mode

The 12CMODE bit of the I2CCONFIG register, when
set to 1, will configure the I1°C interface as a master.

In master mode, the VRS51L3174 [*C interface
controls the I12C bus. It can initiate and end I?C
transactions. In master mode, the I>C interface also
controls the communication speed.

Clearing the 12CMODE bit of the I2CCONFIG register
will configure the I?C interface as a slave. Slave mode
can be useful for applications in which the
VRS51L3174 operates as a peripheral in a host-
controlled system.

www.ramtron.com

page 64 of 114

VRS51L3174

rRAM RSN

When in master mode, the I°C interface can be
configured to generate a start condition after the next
data acknowledge phase. This is done by setting the
[2CMASTART bit to 1.

When the MASTRARB bit is set to 1, communications
of the I?C will be monitored and an interrupt will be
generated if arbitration with slave devices on the bus is
lost. The interrupt flag associated with this process is
the I2CERROR bit of the I2CSTATUS register.

If the I2CRXSTOP bit is set to 1, the I12C interface will
not acknowledge it has received the next data byte: It
will generate a stop condition instead, which will end
the transaction.

When set to 1, the 1I2CSCLLOW bit will force the I1?)C
interface to pull the SCL line low during the next data
acknowledge phase. This feature enables the user to
add the equivalent of wait states to the transfer in
order to support “slow” devices connected to the I12C
bus.

The state of the I2CSCLLOW is sampled when the I12)C
interface enters the data phase. This bit must not be
set during the data acknowledge phase, which can be
monitored using the I2CACKPH bit of the I2CSTATUS
register.

The I?C interface includes support for four interrupt
conditions via two interrupt vectors.

RX Data Available

RX Overrun

TX Empty

Master Lost Arbitration

The following table summarizes the possible interrupt
sources at the I?C interface level.

TABLE 108: I°C INTERRUPT SOURCES

See the VRS51L3174 interrupt section for more
details.

9.4 I?C Timing Control Register

The 12CTIMING register controls the communication
speed when the I?C interface is configured in master
mode. When in slave mode, it defines the values of the
setup and hold times.

TABLE 109:1°C TIMING REGISTER - 2CTIMING SFR D2H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 1 1 0 0

Bit Mnemonic Description
7:0 12CTIMING[7:0] I12C master/slave timing configuration register
See Below

The following formulas demonstrate the impact of the
[2CTIMING value on the communication speed and
setup/hold times.

In master mode:

SCL period = 12CCLK
32*(1I2CTIMING[7:0] + 1)

The following table provides examples of the
[2CTIMING values and the corresponding
communication speed:

TABLE 110: I°C cOMMUNICATION SPEED VS. I2CTIMING REGISTER VALUE (Fosc = 40MHz)

1I2CTIMING 12C Com Speed
00h 1.25 MHz
02h 416.77 kHz
0Ch (Reset) 96.15 kHz
7Ch 10kHz
FFh 4.88kHz

I>C Interrupt I2CCONFIG bit | Interrupt
(Set to 1 to activate) Vector
RX Data [2CRXAVEN 4Bh
Available (Int 9)
RX Overrun [2CRXOVEN 0x4B
(Int9)
TX Empty [2CTXEEN 0x4B
(Int9)
Master Lost MASTRARB 0x53
Arbitration (Int10)

To activate the I°C interface interrupts, the
corresponding enable bit of the I2CCONFIG register
must be set to 1. This will allow the I>C interrupt to
propagate to the VRS51L3174’s interrupt controller. In
order for the I2C interrupt to be recognized by the
processor, the corresponding bit of the INTEN2 and
INTSRC2 registers must be configured accordingly.

www.ramtron.com

page 65 of 114

VRS51L3174

rRAM RSN

In Slave Mode:

Set-up/Hold Time = I2CCLKperiod * 2CTIMING[7:0]

In this case, the precision is: 2 x I2CCLKperiod

TABLE 111: I1>C SETUP AND HoLD TIME vs. I2CTIMING REGISTER VALUE (Fosc = 40MHz)

I2CTIMING Setup/Hold
Time

00h 0 uS

0Ch 0.3uS

FFh 6.38 uS

9.5 I2CSTATUS Register

Monitoring of the I?C interface can be done via the
[I2CSTATUS register located at SFR address D4h.
The I2CSTATUS register is read-only.

TABLE 112: I°C STATUS REGISTER - 12CSTATUS SFR D4H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 1 0 1 0 0 1
Bit Mnemonic Description
7 Slave Mode Error Flag:
0 = No Error

1 = Indicates that the I>C interface received an
unexpected stop

This flag is reset the next time the I2C interface
I2CERROR exits from an idle state (see below)

Master Mode

0 = No Arbitration Error

1 = I?C interface has lost arbitration

This flag is reset the next time the I°C interface
exits from an idle state (see below)

6 I2CNOACK I2C Acknowledge Error Flag

0 = Acknowledge was received normally

1 = No acknowledge was received during the
last acknowledge phase

This flag is reset the next time the I2C interface

exit from the idle state (see below)

5 I2CSDASYNC 12C SDA Sync Status Flag
0 = SDA Pin in not in sync
1 = SDA pin is in sync

4 12CACKPH When set, this flag indicates that the I1>C
interface is in ‘Data Acknowledge Phase.’
5 phases of I12C protocol:

1. Idle

2. Device ID

3. Device ID Acknowledge

4. Data

5 Data Acknowledge

3 12CIDLEF I2C is idle

0 = I?C interface is communicating

1 = I?C interface is inactive (idle phase) and the
SCL and SDA lines are high

2 12CRXOVF I12C RX Overrun Interrupt Flag
0 = No I>C RX overrun condition detected

1 = I2C data collision occurred

1 I2CRXAVF I12C RX Available interrupt Flag
0 =I2C receive buffer is empty

1 = Data is present in the I°C RX buffer

0 I2CTXEMPF I?°C TX Empty interrupt Flag
0 =1?C transmit buffer is full
1 =12C transmit buffer is ready to receive new

data

The 12CERROR flag indicates that an error condition
has occurred on the I2C interface. In master mode, the
I2CERROR flag will be set by the VRS51L3174 I2C
interface, if it loses bus arbitration.

In slave mode, if an unexpected stop is received, the
[2CERROR flag will be set. The I2CERROR flag will
be automatically reset by the I°C interface the next
time it exits an idle state.

If the I2CNOACK flag is set to 1, it signifies that the
slave device did not acknowledge the last data byte it
received.

www.ramtron.com

page 66 of 114

VRS51L3174

rRAM RSN

The I2C interface also monitors the synchronization of
the SDA line. When synchronization is lost, the
[2CSDASYNC bit of the I2CSTATUS register will be
set by the I2C interface.

The 12CSDASYNC bit of the I12CSTATUS register
returns the value of the SDA line the moment a read
operation is performed on the I2CSTATUS register.

When set, the I2CACKPH bit indicates that the I°C
interface is currently in the data acknowledge phase.

The 12CSDASYNC and I2CCKPH bits can read to
determine whether the slave device has
acknowledged. If both bits are set to 1 at a given time,
the slave device did not acknowledge.

TABLE 113: I°C STATUS REGISTER - I2CSTATUS SFR D4H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 1 0 1 0 0 1
Bit Mnemonic Description
7 Slave Mode Error Flag:
0 = No Error

1 = Indicates that the I?C interface received an
unexpected stop

This flag is reset the next time the I°C interface
I2CERROR exits from an idle state (see below)

Master Mode

0 = No Arbitration Error

1 = IC interface has lost arbitration

This flag is reset the next time the 1C interface
exits from an idle state (see below)

6 I2CNOACK 12C Acknowledge Error Flag

0 = Acknowledge was received normally

1 = No acknowledge was received during the
last acknowledge phase

This flag is reset the next time the I°C interface

exit from the idle state (see below)

5 I2CSDASYNC I12C SDA Sync Status Flag
0 = SDA Pin in not in sync
1 = SDA pinis in sync

4 12CACKPH When set, this flag indicates that the I1>°C

interface is in ‘Data Acknowledge Phase.

3 12CIDLEF I2C is idle

0 = I?C interface is communicating

1 = I2C interface is inactive (idle phase) and the
SCL and SDA lines are high

2 I2CRXOVF 12C RX Overrun Interrupt Flag
0 = No I>°C RX overrun condition detected

1 = I>C data collision occurred

1 I2CRXAVF 12C RX Available interrupt Flag
0 = I2C receive buffer is empty

1 = Data is present in the I?°C RX buffer

0 12CTXEMPF 12C TX Empty interrupt Flag
0 =I>)C transmit buffer is full
1 =12C transmit buffer is ready to receive new

data

When set, the [2CIDLEF indicates that the 12C bus is
idle and that a transaction can be initiated. Before
initiating an I°C data transfer, it is recommended to
check the state of the I2CIDLEF bit. This bit indicates
whether or not a data transfer is currently in progress.

When new data is received in the I°C receive buffer,
the 12CRXAVF interrupt flag will be set. Data must be
retrieved from the I[2CRXTX buffer before the
reception of the next data byte is complete.

When set, the 12CRXOVF flag indicates an overrun
condition in the I?C interface receive buffer and the
data is potentially corrupted. The I12CTXEMPF
interrupt flag is set by the I?C interface when the
transmit data buffer is ready to receive another data
byte.

9.6 I2CRXTX Register

The I2C interface transmit and receive buffers are
accessed via the I2CRXTX SFR register, which is
accessible at SFR address D5h.

TABLE 114:I°C DATA RX/TX REGISTER I2CRXTX - SFR D5H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W RIW R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 I12CRXTX[7:0] Read: I)C Receive Buffer

Reading the I2CRXTX register will clear the
I2CRXAV and I2CRXOV flags

Write: 12C Transmit Buffer
In Master mode, writing into the I2CRXTX
register will trigger the transmission

The 12CRXTX SFR is made up of two distinct registers
set: One for data transmission and one for data
reception. Each register set features a double data
buffer as shown in the diagram below.

FIGURE 32: I2CRXTX[7:0] DATA BUFFER STRUCTURE

12C Bus

12C TX
(SFR D5h - Write)
12C
———— Module
12C RX

(SFR D5h - Read)

When the 12C is configured in master mode, writing
any data to the 12CRXTX register will trigger a data
transmission. Unless the I?’C interface is currently
transmitting a byte, if the TX Empty interrupt is
activated, a TX Empty interrupt will occur as soon as a
new data byte is placed into the I2CRXTX register.

www.ramtron.com

page 67 of 114

VRS51L3174

rRAM RSN

In order to read data from the I°C interface, when
configured in master mode, the device ID with the R/W
bit set to 1 must first be sent to the device. Then the
program should wait for the [2CRXAV flag of the
[2CSTATUS register to be set. At that point, the data
can be read from the I2CRXTX register.

As previously mentioned, the data must be retrieved
from the 1I2CRXTX register before the next data byte
reception is complete. Otherwise, an [12C RX Overrun
condition will occur.

Reading the content of the I2CRXTX register will
automatically clear the I2CRXAV and I12CRXQV flags,
which are read-only.

9.7 Checking Presence of the I°C Slave
Device

When the I?C is configured in master mode, the bus
master should check for the presence and the
readiness of the slave I°C devices connected to the
bus at least once after I?C bus initialization.

It is also recommended to check whether the slave
device is present and ready before issuing a I°C
transaction. This would allow the I°C Master to verify
the I?C Slave device connected to the bus is not busy
accomplishing other tasks and not responding.

This is especially true in the case of I°C EEPROM
devices, which will not respond to the master when
they are busy performing data writing operations. It is
unnecessary to check before each transaction whether
FRAM memory devices are present and ready.

If the slave device fails to respond to the device ID sent
by the master, the master will generate a stop
condition immediately.

The 12CACKPH flag of the 12CSTATUS register is set
to 1 during the I12C data acknowledge phase. However,
this flag will remain inactive during the device ID
acknowledge phase.

As a result, if the slave device fails to acknowledge
following the transmission of the slave device ID, the
I2C interface will only detect the error condition after
data acknowledge phase.

The following diagram represents what could happen if
the slave device fails to generate an ck signal following
the device ID sent by the master:

FIGURE 33: 12C INTERFACE BEHAVIOR WHEN SLAVE DEVICE DOES NOT ACK TO DEVICE ID

If Slave does ACK to the ID

Master sends: 1D ack
D +RW=0 phase

| [uasersemsomar

lS\ave receives: I Slave

ive ata
DaRWeT Ack l l Slave receives Data 1 I e

If Slave does NOT ACK to the ID

phase

Master sends: IDack
s | | [uosersomsomer |

Master sends Data 1

E
as new device ID. ok

l Slave is busy or absent I Noack l l
no ack.

Data 1 corresponds/ If the Slave did not
to the Slave ID the ack in previous byte
slave will ack and itwill not ack in the
The Master will then then the error will data phase which
generate a Stop go undetected by will be detected by
followed by a Start the Master the Master at this
j\ point...
SDA No ack Next Data Byte is used
From asan D...
Slave A ¥
Master ..Followed
generates by 4 Start
a Stop...

To work around this situation, send a device ID with
R/W = 0 followed by a stop. If the device fails to
respond the I1?)C ID, the I2CNOACK bit of the
[I2CSTATUS register will be set to 1 when the I°C bus
becomes idle.

www.ramtron.com

page 68 of 114

VRS51L3174

rRAM RSN

If the I2CNOACK is not set, then the I1°C master can
proceed with the I?C ftransaction starting with the
device ID + R/W followed by the data to be written or
read.

FIGURE 34: CHECKING PRESENCE AND READINESS IF |2C SLAVE

12C Slave Device
Presence Check

Enable & Configure the 12C interface
I

Write 12C ID + RIW =0
into the I2CRXTX register

No

No

Yes

Slave 12C Device is Slave 12C Device
present and ready either absent or busy

9.7.1 Slave I’C device presence check
example

The function example below checks whether the
device pointed to by the device ID responds to the
master command. As mentioned in the previous
paragraph, this check should be done to ensure the
targeted I?C slave device is present on the I1°C bus and
is ready.

/] //
/I Function 12CSlaveReady(char) 1
1]. 1/

/I Descrition:

/I Master 12C Slave Ready Check function

/I Check if the device pointed by the device ID does respond to the Master command
/I This check should be done to ensure the targeted 12C Slave device is

/I present on the 12C bus and is ready.

/I The Slave Ready Check should be performed at least once after I2C module

/I initialisation.

/I It should also be performed before each transactioln sequences to slow

/I devices such as EEPROM. It is not necessary to perform a 12C Slave ready

/I check when the target device is 12C FRAM device.

//. /

char I2CSlaveReady(char id)
{
char addrtemp= 0x00; /ltemporary address holding variable
12CCONFIG = 0x01;

[2CRXTX = id;
WaitTXEMP();

//Write 12C device ID + W

/I--Wait for 12C IDLE (This will generate a STOP)
Waitl2CIDLE();

if(I2CSTATUS & 0x40)!= 0x00) //If 2CNOACK == 1 -> No answer -> Return 01
return 0x00;
else
return 0x01;

Ylend of I2CSlaveReady(char id);

9.8 12C Slave Device ID and Advanced
Configuration

When operating in slave mode, the device ID on the
I2C interface is configurable. The seven upper bits of
the 12CIDCFG register contain the user-selected
device ID. Bit 0 of the 12CIDCFG register has two
distinct roles.

TABLE 115:1°C Device ID CONFIGURATION -12CIDCFG SFR D3H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RIW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

[7:1] 12CID[6:0] Slave I>C device ID as selected by user

0 I2CADVCFG Read: Indicates that the I>C slave has received
ID that is different from the 12CID[6:0].

This flag is cleared when the received ID
corresponds with the 12CID

Writing:

Slave Mode:

1= The I2CRXAV flag is Not raised when the
IC slave receives a device ID

0 = The I2CRXAV flag will be raised for each
data byte on the 12C bus. However is the the
received device Is does not match the
12CID[6:0] the 12C module will not acknowledge.

Master Mode:

1 = The Master will not enter in a “wait State” if
there is a mismatch between the expected SCL
state and what it should be.

0 = Enables monitoring of the SCL line in wait
state mode in case of mismatch of the SCL line
vs. the expected value

The 12CAVCFG provides advanced control on I°C
interface operations. Its functionality depends whether
the I?C interface is configured in master or in slave
mode.

In Master Mode:

When the I?C interface operates in master mode and
the I2CADVCEFG is cleared, the I2C interface module
will continuously monitor the SCL line. If the slave
device drives the SCL line into an incorrect state, the
I2C interface will enter wait state mode until the slave
device releases the SCL line. This mode can be
useful for a I°C communication debug.

When the [2CADVCFG bit is set and the device
operates in master mode, no monitoring of the SCL
line will be executed by the [?°C module and the
transaction will proceed independently of the level of
the SCL line.

www.ramtron.com

page 69 of 114

VRS51L3174

rRAM RSN

In Slave Mode

When the I?C interface is configured in slave mode,
the state of the I2CADVCFG bit when read indicates
whether the ID received matches the current device
ID. If the I2CIDCFG reads as 1, then the received ID
corresponds to the 12CID[6:0] value.

The value written to the I2CADVCFG bit will define
whether the I2C interface will monitor the transactions
on the I’C bus or not. When the I2CADVCFG bit is
cleared, the I?C interface will monitor the activity on the
I2C bus and will raise an RXAV interrupt for each data
byte received from the I?C bus, including the device ID
at the beginning of a transaction.

Setting the I2CADVCFG bit to 1 will deactivate the I>C
interface transactions monitoring feature for
transaction beginning with a device ID that does not
match the 12CID[6:0] value.

Independent of the value written in the I2CADVCGF bit
of the 12CIDCFG register, if the I?C transaction device
ID does not match the 12CID[6:0] value, the I2C
interface will not acknowledge the incoming data nor
will it transmit data to the master.

9.9 I*C Interface Example Programs

9.9.1 EEPROM Interface Programs

The following program provides example code for I1°C
control of EEPROM devices.

//. /Il

/I VRS2k-I’C _EEPROM.c //
1/- //

4
/] This example program demonstrate the use of the I°C
Il interface to perform basic read and write operations on a

/I Standard EEPROM device.
//- //

#include <VRS51L3174_SDCC.h>

/l----Global variables ------//
int cptr = 0x00; /lgeneral purpose counter

/I --- Function prototypes

char EERandomRead(char,int);

char EERandomWrite(char, char, int);
void WaitTXEMP(void);

void WaitRXAV(void);

void Waitl2CIDLE(void);

void wait();

//. //

[/Z—_ 7\ |NY <'U] \Toq i o) Jmmm— I
/I mn

void main (void){

PERIPHEN1 = 0x20; //[Enable 12C Interface

INTCONFIG = 0x02; //Erase Bypass global int, before configuring the INTO pin event
/[This fix inadvertent INTO interrupt that occurs when
//INTO cause is set to Rising edge

INTSRC1 = 0x01; //INTO vector source = INTO pin

INTPINSENS1 = 0x01; //Set INTO sensitive on edge(1) or Level(0)

INTPININV1 = 0x00; //Set INTO Pin sensitivity on Normal Level(0) / Inverted (1)
INTEN1 = 0x01; //[Enable INTO (bit0) Interrupt

INTCONFIG = 0x01; //Enable Global interrupt

while(1);
}Y/lend of Main

e Interrupt Functions -----------------------—-) 1
1/- //
Jlrmmmemmm e /)

/- Interrupt INTO ----//

Jlemmmmmmmemem e i

I /)
void INTOInterrupt(void) interrupt 0
char x;

/l-- Send I?)C stuff
cptr = 0x00; /I Init cptr to pint to message beginning
INTEN1 = 0x00; //Disable Interrupts

x = EERandomWrite(0xA0, 0x36, 0x0206); /IPerform Write operation
Delay1ms(100);

x = EERandomRead(0xA0, 0x0206); //Perform Read operation
INTEN1 = 0x01; /[Enable Interrupt INTO

Ylend of INTO interrupt

/] /]

Jrmmmmmmmm e Individual Functions -----==-=============-//
//. i

/] //

/l---- Function EERandomRead(char eeidw,int address) ----//
//. //

char EERandomRead(char eeidw,int address){
12CTIMING = 0x20; /I 12C Clock Speed = about 100kHz
I2CCONFIG = 0x01; II1’C is Master
I2CRXTX = eeidw; //\Write I°C device ID + W
WaitTXEMP();
I2CRXTX = address >>8; //Write I°C ADRSH
WaitTXEMP();
I2CRXTX = address; //\Write 1°C ADRSL
/I--Wait for I2C IDLE (This will generate a STOP)
Waitl2CIDLE();

/I--Start a Preset ADRS read (This will generate a START)
I2CRXTX = eeidw+1; /\Write I)C device ID + R
WaitTXEMP();
I2CCONFIG |= 0x02; /IForce I2C to Not Acknowledge after

IIreceiving the next data byte

WaitRXAV(); //Wait for RX Available bit, This will trigger I°C Reception
return I2CRXTX; //IReturn Data Byte

}/End of EERandomRead

/. /l

/- Function EERandomWrite(char eeid,char data, int address) ----------//
1/- //

char EERandomWrite(char eeidw, char eedata, int address){
12CTIMING = 0x20; /I'2C Clock Speed = about 100kHz
I2CCONFIG = 0x01; II1?C is Master
I2CRXTX = eeidw; /M\Write 12C device ID + W

WaitTXEMP();
I2CRXTX = address >> 8; //Write I>)C device ID + W
WaitTXEMP();
I2CRXTX = address; //\Write I?C device ID + W
WaitTXEMP();

I2CRXTX = eedata;
WaitTXEMP();

//Write I?)C device data

return I2CRXTX; //IReturn Data Byte

}Y/End of EERandomWrite

/. //

[l-------- Function WaitTXEMP() ---------- 1l
//. //
void WaitTXEMP()

{

wait();

do{

USERFLAGS = [2CSTATUS;
USERFLAGS &= 0x01; Ifisolate the 12C TX EMPTY flag
Jwhile(USERFLAGS == 0x00); //Wait for °C TX EMPTY
Ylend of Void WaitTXEMP()

www.ramtron.com

page 70 of 114

VRS51L3174

rRAM RSN

void WaitRXAV()
{

wait();
do{

USERFLAGS = I2CSTATUS;

USERFLAGS &= 0x02; Ilisolate the I2CRXAV flag

}while(USERFLAGS == 0x00); //Wait for I°C RX AVAILABLE

Ylend of Void WaitRXAV()

Nememr Function Waitl2CIDLE() - Z

void WaitI2CIDLE()

wait();
do{
USERFLAGS = [2CSTATUS;

USERFLAGS &= 0x08; Ilisolate the I°C idle flag

Jwhile(USERFLAGS == 0x00);

Mlend of Void Waitl2CIDLE()

/I //
- Function Wait() ----------//
//

void wait(){
char i=0;
while (i<25) {i++;};
}

9.9.2 12C Interface used in slave mode

The following example program presents how to
configure and use the I°C interface in slave mode to
create an 1/O port expander using the VRS51L3174.

This demonstration program can be downloaded at
www.ramtron.com/doc/Products/Microcontroller/Support Tools.asp

/- /

/I V2K_12C_Slave_|O_Exp_SDCC.c /

m /]

1/ Description:

/I This demo program illustrate how to use the VRS51L3074 I12C interface configured
/I in Slave Mode to create an 12C based I/O expander.

/' The Memory Map of Slave 12C device as seen from the Master 12C device is
/I as shown below. The address is constituted of 1 byte.

/I 12Cregs V3K

/I address Register

I 0x00 PO /11O port 0 register

" 0x01 P1 /NO port 1 register

" 0x02 P2 /NO port 2 register

I 0x03 P3 /NO port 3 register

I 0x04 P4 /11O port 4 register

" 0x05 P5 /NO port 5 register

" 0x06 P6 /N0 port 6 register

I 0X07~0X0F ~~~~~~~~ /lUndefined / Restricted

I 0x10 POPINCFG //10 port 0 configuration register (1= Input, 0=Output)
" 0x11 P1PINCFG //I0 port 1 configuration register (1= Input, 0=Output)
" 0x12 P2PINCFG //10 port 2 configuration register (1= Input, 0=Output)
I 0x13 P3PINCFG //10 port 3 configuration register (1= Input, 0=Output)
I 0x14 P4PINCFG //10 port 4 configuration register (1= Input, 0=Output)
" 0x15 P5PINCFG //10 port 5 configuration register (1= Input, 0=Output)
" 0x16 PBPINCFG //10 port 6 configuration register (1= Input, 0=Output)
/I >=0x17 Undefined / Restricted

/I Multiple read or write operations can be performed in one access sequence
/I The first byte of each transaction does sets the address byte.

/I The first byte of all I2C write operation is the address byte.

/I Read operations are performed from the current address

/I when multiple byte read or write operation, the address value is incremented
/I after each data byte read from or written to the device.

/I The address value at reset is 0x00
//. /

#include <VRS51L3074_SDCC.h>

/I----Global variables ------ 1

char i2cvalue = 0x00; /lgeneral purpose variable
char count = 0x00;

char address = 0x00; /linitialise address

char state = 0x00; /finit the 12C state indicator
char rxdata;

char bytecount;

/I --- function prototypes
void WaitTXEMP(void);
void WaitRXAV(void);
void Waitl2CIDLE(void);
void wait();

www.ramtron.com

page 71 of 114

VRS51L3174

rRAM RSN

1/

1

//.

Main Function

void main (void){

Ilconfigure the 12C in slave mode

PERIPHENT1 |= 0x20;
12CRXTX = 0x00;
I2CCONFIG = 0x70;

12CIDCFG = 0x41;

I2CRXTX = 0x00;

//[Enable 12C Interface

/Init the transmit portion of the I2CRXTX buffer
//12C Slave, Int RXOV, RX Available,
/ITX Empty Interrupts enabled

/If 12C ID = 0x40,

/IRx AV Flag will be raised only when the
Ilcorrect ID is received

//Perform a dummy write into

/lthe 12CRXTX register

}
Y/end of switch(address)
state = 0x01;
Ylend of if state == 0x00

else
if(bytecount!= 0x00)

{
IIrxdata = 12CRXTX;

switch(address)

/IRetrieve data

case 0x00: {PO = I12CRXTX; I2CRXTX = P1; address++; break;}
case 0x01: {P1 =12CRXTX; I2CRXTX = P2; address++; break;}
case 0x02: {P2 = 12CRXTX; I2CRXTX = P3; address++; break;}
case 0x03: {P3 = I2CRXTX; I2CRXTX = P4; address++; break;}
case 0x04: {P4 = 12CRXTX; I2CRXTX = P5; address++; break;}
case 0x05: {P5 = I2CRXTX; I2CRXTX = P6; address++; break;}

12CTIMING = 0x01;

/lto deactivate the TXEmpty Flag

/I-Configure the 12C Slave interrupt

INTSRC2 &= OxFD;
IPININV2 = 0x00;
IPINSENS2 = 0x00;
INTEN2 = 0x02;
GENINTEN = 0x01;

/I-Wait for 12C interrupt

do{

if I2CSTATUS & 0x08)

state = 0x00;
bytecount = 0x00;

Iwhile(1);
Ylend of Main
- Interrupt 12C ---//

A —

/ISet INT9 vector source = [2C module

//Set interrupt sensitivity to Level(0)

//[Enable 12C interrupt (bit1)
//Enable Global interrupt

/ICheck if 12C interface is IDLE
/finit the 12C state indicator

void 12ClInterrupt(void) interrupt 9

{

char status;

count++;
INTEN2 = 0x00;

/IDisable Interrupt

/IAdd code for Slave 12C

status = I2CSTATUS;

//IRead the 12C status register

/I---Case of 12C RX available

if((status & 0x02))

bytecount++;
if(state == 0x00)

/IRX available

//f state == 0x00 -> a new transmission begins

{
address = [2CRXTX;

bytecount = 0x00;

/IReset byte counts

/I-- Prepare the transmit portion of the I2CRXTX buffer
/I for the case where the address is set only to read a data

switch(address)

case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x10:
case Ox11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:

{I2CRXTX = PO; break;}
{I2CRXTX = P1; break;}
{I2CRXTX = P2; break;}
{I2CRXTX = P3; break;}
{I2CRXTX = P4; break;}
{I2CRXTX = P5; break;}
{I2CRXTX = P6; break;}
{I2CRXTX = POPINCFG; break;}
{I2CRXTX = P1PINCFG; break;}
{I2CRXTX = P2PINCFG; break;}
{I2CRXTX = P3PINCFG; break;}
{I2CRXTX = P4PINCFG; break;}
{I2CRXTX = P5PINCFG; break;}
{I2CRXTX = P6PINCFG; break;}

/ICase of invalid address

default:

I2CSTATUS |= 0x02;

/lafter next data byte

while(I(12CSTATUS & 0x08)); //wait for 12C IDLE

address = I2CRXTX;
12CRXTX = PO;

address = 0x00;
state = 0x00;
bytecount = 0x00;

/linadvertant 12CTX int
lIreset address
lIreset State
/IReset byte counts

break;

/IForce the 12C interface to not acknowledge

/lperform a dummy read
/lput PO on I2CRXTX to prevent

case 0x06: {P6 = I2CRXTX;

I2CRXTX = POPINCFG;

address = 0x10; //jump address value to point to POPINCFG

break;}

case 0x10: {POPINCFG = I2CRXTX;

I2CRXTX = P1PINCFG;
address++;
break;}

case 0x11: {P1PINCFG = I2CRXTX;

I2CRXTX = P2PINCFG;
address++;
break;}

case 0x12: {P2PINCFG = I2CRXTX;

I2CRXTX = P3PINCFG;
address++;
break;}

case 0x13: {P3PINCFG = I2CRXTX;

I2CRXTX = P4PINCFG;
address++;
break;}

case 0x14: {P4PINCFG = I2CRXTX;

I2CRXTX = P5PINCFG;
address++;
break

case 0x15: {PSPINCFG = I2CRXTX;

I2CRXTX = P6PINCFG;
address++;
break;}

case 0x16: {P6PINCFG = [2CRXTX;

I2CRXTX = PO;
address = 0x00;
break;}

}Y/lend of switch

Ylend of if

bytecount

Ylend of RX Available Flag handling

//---Case of 12C TX Empty available

if(status & 0x01)

/ITX Empty

/IData of current address already gone
/Imust prepare Tx portion of I2CRXTXD for next data

switch(address)
case 0x00: {I2CRXTX = P1; break;}
case 0x01: {I2CRXTX = P2; break;}
case 0x02: {I2CRXTX = P3; break;}
case 0x03: {I2CRXTX = P4; break;}
case 0x04: {I2CRXTX = P5; break;}
case 0x05: {I2CRXTX = P6; break;}
case 0x06: {I2CRXTX = POPINCFG; address = 0x10; break;}
case 0x10: {I2CRXTX = P1PINCFG; break;}
case 0x11: {I2CRXTX = P2PINCFG; break;}
case 0x12: {I2CRXTX = P3PINCFG; break;}
case 0x13: {I2CRXTX = P4PINCFG; break;}
case 0x14: {I2CRXTX = P5PINCFG; break;}
case 0x15: {I2CRXTX = P6PINCFG; break;}
case 0x16: {I2CRXTX = PO0; address = OxFF; break;}

Y/end of switch

address++;

MY/End of If TX Empty...

www.ramtron.com

page 72 of 114

VRS51L3174

rRAM RSN

if((status & 0x06)) /IRX Overrun -- this should not happen
i2cvalue = I2CRXTX; /lempty RXTX buffer
INTEN2 = 0x02; //[Enable 12C Interrupt

Ylend of 12C interrupt

e Individual Functions ------=-=======-==---
11 I
/I Auxiliary sub functions used by 12C functions

//- //

J/A— Function WaitTXEMP() «--------- Il
void WaitTXEMP()
{

wait();

do{

USERFLAGS = I2CSTATUS;

USERFLAGS &= 0x01; /lsolate the I2CTXEMPTY flag
}while(USERFLAGS == 0x00); //Wait for 12C TX EMPTY
Mlend of Void WaitTXEMP()

/[-------- Function WaitRXAV() ----------, 1/
void WaitRXAV()
{
wait();
do{
USERFLAGS = I2CSTATUS;
USERFLAGS &= 0x02; Ilisolate the I2CRXAV flag
}while(USERFLAGS == 0x00); //Wait for 12C RX AVAILLABLE
Mlend of Void WaitRXAV()

femmmeee Function WaitI2CIDLE() ----------//
void Waitl2CIDLE()
{
wait();
do{
USERFLAGS = I2CSTATUS;
USERFLAGS &= 0x08; /Isolate the 12C IDLE flag
}while(USERFLAGS == 0x00);
Mlend of Void Waitl2CIDLE()

f-mmmmme Function Wait() ----------//
void wait(){

char i=0;

while (i<25) {i++;};

}

www.ramtron.com

page 73 of 114

VRS51L3174

rRAM RSN

10 Pulse Width Modulators (PWMs)

The VRS51L3174 includes eight independent PWM
channels, each based on a 16-bit timer.

All of the PWM modules can be configured to operate
as a regular PWM with adjustable resolution, or as a
general purpose 16-bit timer. The PWMEN register is
used to enable the different PWM modules.

TABLE 116: PWM ENABLE REGISTER - PWMEN SFR AAH

7 6 5 4 3 2 1 0

RW RW RW RW RW RW RW RW

0 0 0 0 0 0 0 0

Bit Mnemonic Description

7 PWM7EN PWM?7 Channel Enable
0 = PWM channel 7 is deactivated
1 = PWM channel 7 is activated

6 PWMGEN PWM®6 Channel Enable
0 = PWM channel 6 is deactivated

1 = PWM channel 6 is activated

5 PWMS5EN PWMS5 Channel Enable
0 = PWM channel 5 is deactivated

1 = PWM channel 5 is activated

4 PWM4EN PWM4 Channel Enable
0 = PWM channel 4 is deactivated

1 = PWM channel 4 is activated

3 PWM3EN PWM3 Channel Enable
0 = PWM channel 3 is deactivated

1 = PWM channel 3 is activated

2 PWM2EN PWM2 Channel Enable
0 = PWM channel 2 is deactivated

1 = PWM channel 2 is activated

1 PWM1EN PWM1 Channel Enable
0 = PWM channel 1 is deactivated

1 = PWM channel 1 is activated

0 PWMOEN PWMO Channel Enable
0 = PWM channel 0 is deactivated

1 = PWM channel 0 is activated

The following figure provides an overview of the PWM
modules.

FIGURE 35: PWM MODULES OVERVIEW

PWMLOPOL = 1
[FommRes]
PWMTMRPR o Tmerx
sra Div Ratio: ITTTTITITTITTIT
L
Downto |
Sys Clk/ 16384 | |
I
I > PHMEND
I
|
‘ ———— PWMx Pin
! >PWM MID
| P END
I
‘
I
‘
I
I
|
} To others
——— PwMm
| Modules

10.1 PWM MID and END registers
Each PWM module includes two 16-bit registers:

o PWM MID value register
o PWM END value register

The PWM MID register is a 16-bit register that
configures the point at which the PWM output will
change it’s polarity.

The PWM END register is a 16-bit register that defines
the maximum PWM internal timer count value, after
which it rolls over to 0000h. See the following timing
diagram.

FIGURE 36: PWM POLARITY SETTING

| —— Cycle 1——p» | 4—Cycle 2——p» |

bt AT

Start PWM MID PWM END
0000h Value value

oy

This configuration allows the user to adjust the
resolution of the PWM up to 16 bits. Access to the
PWM internal registers and the PWM configuration is
handled by the PWMCFG register located at address
A9h.

PWM Timer roll
over here and the
cycle repeats

www.ramtron.com

page 74 of 114

VRS51L3174

rRAM RSN

TABLE 117:PWM CONFIGURATION REGISTER - PWMCFG SFR A9H

7 6 5 4 3 2 1 0

TABLE 119:PWM POLARITY AND CONFIG LOAD STATUS — PWMLDPOL ABH

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

6 PWMWAIT PWM Waits Before Loading New Configuration
0 = New PWM configuration is loaded at the
end of PWM cycle

1 = The update of the PWM configuration only
occurs when the end of the PWM is reached

and the bit is set to 0

5 PWMCLRALL | PWM Clears All Channels

0 = No Action

1 = Simultaneously clears all the flags and all
the PWM channel timers

This bit is automatically cleared by hardware

4 PWMLSBMSB PWM LSB/MSB Select
0 = Selected PWM LSB SFR is addressed

1 = Selected PWM MSB SFR is addressed

3 PWMMIDEND PWM MID/END Register
0 = Selected PWM MID SFR is addressed

1 = Selected PWM END SFR is addressed

2:0 PWMCH]I2:0] PWM Channel Select
000 = PWMO on P2.0
001 = PWM1 on P2.1
010 = PWM2 on P2.2
011 =PWM3 on P2.3
100 = PWM4 on P2.4
101 = PWM5 on P2.5
110 = PWM6 on P2.6
111 =PWM7 on P2.7

The PWM channels are configured one at the time.
This topology has been adopted in order to minimize
the number of SFR registers required to access the
PWM modules.

In applications where multiple PWM channels need to
be configured simultaneously, the user can set the
PWMWAIT bit of the PWMCFG register, configure
each one of the PWM channels, and then clear the
PWMWAIT bit. The PWM configurations will then be
updated at the end of the next PWM cycle, after the
PWMWAIT bit has been cleared.

TABLE 118:PWM DATA REGISTER SFR ACH

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 PWMDATA[7:0] PWM Data Register

The PWM data register serves to configure the
selected channel MSB/LSB value of either the MID or
END point, as specified in the PWMCFG register.

The PWMIDx defines the actual timer value and the
PWMEND defines the maximum timer count value
before it rolls over.

The PWMLDPOL register controls the output polarity
of each one of the PWM modules or clears the timer’s
value when the PWM modules operate as general
purpose timers.

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 PWMLDPOL7 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded
Write
In PWM Mode
0 = PWM 7 cycle starts with a low level
1 =PWM 7 cycle starts with a high level
In Timer Mode
0 = No action
1 = PWM timer 7 value is cleared to 0
6 PWMLDPOL6 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded
Write
In PWM Mode
0 = PWM 6 cycle starts with a low level
1 = PWM 6 cycle starts with a high level
In Timer Mode
0 = No action
1= PWM timer 6 value is cleared to 0
5 PWMLDPOL5 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded
Write
In PWM Mode
0 = PWM 5 cycle starts with a low level
1 = PWM 5 cycle starts with a high level
In Timer Mode
0 = No action
1 = PWM timer 5 value is cleared to 0
4 PWMLDPOL4 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded
Write
In PWM Mode
0 = PWM 4 cycle starts with a low level
1 = PWM 4 cycle starts with a high level
In Timer Mode
0 = No action
1 = PWM timer 4 value is cleared to 0
3 PWMLDPOL3 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded
Write
In PWM Mode
0 = PWM 3 cycle starts with a low level
1 = PWM 3 cycle starts with a high level
In Timer Mode
0 = No action
1 = PWM timer 3 value is cleared to 0
2 PWMLDPOL2 | Read:

0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

Write

In PWM Mode

0 = PWM 2 cycle starts with a low level
1 = PWM 2 cycle starts with a high level

In Timer Mode
0 = No action
1 = PWM timer 2 value is cleared to 0

www.ramtron.com

page 75 of 114

VRS51L3174

rRAM RSN

TABLE 121: PWM PRESCALER VALUES

1 PWMLDPOL1 | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

Write

In PWM Mode

0 = PWM 1 cycle starts with a low level
1=PWM 1 cycle starts with a high level
In Timer Mode

0 = No action

1 = PWM timer 1 value is cleared to 0

0 PWMLDPOLO | Read:
0 = Last configuration has been loaded in PWM
1 = Last configuration has not been loaded

U4/LAPWMCLK | Clock U4/L4APWMCLK | Clock

Value (4 bit) Prescaler Value (4 bit) Prescaler
0000 Sys Clk /1 1000 Sys Clk / 256
0001 Sys Clk/ 2 1001 Sys Clk /512
0010 Sys Clk/ 4 1010 Sys Clk / 1024
0011 Sys Clk/ 8 1011 Sys Clk / 2048
0100 Sys Clk/ 16 1100 Sys Clk / 4096
0101 Sys Clk / 32 1101 Sys Clk / 8192
0110 Sys Clk/ 64 1110 Sys Clk/ 16384
0111 Sys Clk / 128 1111 Sys Clk/ 16384

Write

In PWM Mode

0 = PWM 0 cycle starts with a low level
1 = PWM 0 cycle starts with a high level

In Timer Mode
0 = No action
1 = PWM timer 0 value is cleared to 0

10.2 PWM Module Clock Configuration
Register

One system clock prescaler is associated with PWM
modules 0 to 3, while another is associated with PWM
modules 4 to 7. The PWM clock prescalers enables
the PWM output frequency to be adjusted to match
specific application needs, if required. The PWM clock
prescalers are configured via the PWMCLKCFG
register. The four upper bits of this register control the
clock for PMM modules 4 to 7, and the four lower bits
control the clock source for PWM modules 0 to 3.

The PWM module clock configuration register controls
the prescale value applied to the PWM modules’ input
clock, when the PWM modules are configured to
operate as either PWMs or general purpose timers.

TABLE 120: PWM cLock PRESCALER CONFIGURATION REGISTER - PWMCLKCFG AFH

7 6 5 4 3 2 1 0
R/W R/W RW RW RW RW R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
74 U4PWMCLK3[3:0] PWM Timer 7, 6, 5,:4 Clock Prescaler
* see table below
3:0 L4PWMCLK3[3:0] PWM Timer 3, 2, 1,:0 Clock Prescaler
* see table below

The following table shows the system clock division
factor applied to the PWM modules for a given
PWMCLKCFG nibble.

www.ramtron.com

page 76 of 114

VRS51L3174

rRAM RSN

10.3 PWM Example Programs

10.3.1 PWM Basic Configuration

The following example program shows the basic
configuration of PWM modules #0, 1,2, 4 & 5

//. //

/I VRS51L3174-PWM_basic_SDCC.c //
/I /]

n

/I DESCRIPTION: VRS51L3174 PWMs Basic initialization Demonstration Program.

Configure PWMO as 8 bit resolution (25% duty)

A Configure PWM1 as 12 bit resolution (50% duty)

A Configure PWM2 as 16 bit resolution (75% duty)

1 Configure PWM4 as 8 bit resolution and prescaler = 4 (25% duty)
" Configure PWM5 as 16 bit resolution and prescaler = 4 (75% duty)

1/

#include <VRS51L3174_SDCC.h>

/I - function prototypes
void delay(unsigned int);

void main (void) {
PERIPHEN2 = 0x02; /[Enable PWM SFR

/ICLEAR All PWM Channels
PWMCFG = 0x20;

/I Configure the PWM prescaler
PWMCLKCFG = 0x20; /I Apply a clock prescaler (div / 4) on PWM 7:4
/I Configure PWM Polarity
PWMPOL = 0x00; /ISet all PWM in normal polarity

//PWM output = 0 until

/IPWMMID Value is reached

1l
/IConfigure PWMO END value = Ox00FF (8bit)

PWMCFG = 0x58; /IPoint to PWMO END MSB
PWMDATA = 0x00; //Set Max Count MSB = OxFF
PWMCFG = 0x48; //Point to PWMO0 END LSB
PWMDATA = OxFF; /ISet PWM MID MSB = 0x00 (8bit)

/IConfigure PWMO MID value (Duty = 25%)

PWMCFG = 0x50; /IPoint to PWMO0 MID MSB
PWMDATA = 0x00; //Set PWM MID MSB = 0x00
PWMCFG = 0x40; /IPoint to PWMO MID LSB
PWMDATA = 0xBF; /ISet PWM MID LSB = 0xBF

1l
/IConfigure PWM1 END value = OxOFFF (12bit)

PWMCFG = 0x59; //Point to PWM1 END MSB
PWMDATA = 0x0F; //Set Max Count MSB = 0x0F
PWMCFG = 0x49; /IPoint to PWM1 END LSB
PWMDATA = 0xFF; //Set Max Count = OxFF
/IConfigure PWM1 MID value (Duty = 50%)

PWMCFG = 0x51; /IPoint to PWMO0 MID MSB
PWMDATA = 0x08; //Set PWM MID MSB = 0x08
PWMCFG = 0x41; /[Point to PWMO MID LSB
PWMDATA = 0x00; //Set PWM MID LSB = 0x00

- =l
/IConfigure PWM2 END value = OxFFFF (16bit)

PWMCFG = 0x5A; /IPoint to PWM2 END MSB
PWMDATA = OxFF; /ISet Max Count MSB = OxFF
PWMCFG = 0x4A; /IPoint to PWM2 END LSB
PWMDATA = 0xFF; //Set Max Count = OxFF
/IConfigure PWM2 MID value (duty = 75%)

PWMCFG = 0x52; /IPoint to PWM2 MID MSB
PWMDATA = 0x40; //ISet PWM MID MSB = 0x04
PWMCFG = 0x42; /IPoint to PWM2 MID LSB
PWMDATA = 0x00; //Set PWM MID LSB = 0x00
Jfrmmmmmm e e 1l

/IConfigure PWM4 END value = 0x00FF (8 bit) (Clock Prescaler = 4)
PWMCFG = 0x5C; /IPoint to PWM4 END MSB
PWMDATA = 0x00; /ISet Max Count MSB = OxFF
PWMCFG = 0x4C; /IPoint to PWM4 END LSB
PWMDATA = 0xFF; /ISet Max Count LSB = OxFF

//Configure PWM4 MID value (duty = 25%)

PWMCFG = 0x54; /IPoint to PWM4 MID MSB
PWMDATA = 0x00; /ISet PWM MID MSB = 0x00
PWMCFG = 0x44; //Point to PWM4 MID LSB
PWMDATA = 0xBF; //Set PWM MID LSB = OxBF

/IConfigure PWM5 END value = OxFFFF (16bit) (Clock Prescaler = 4)

PWMCFG = 0x5D; /[Point to PWM5 END MSB
PWMDATA = OxFF; /ISet Max Count MSB = OxFF
PWMCFG = 0x4D; /[Point to PWM5 END LSB
PWMDATA = OxFF; //Set Max Count = OxFF
//Configure PWM5 MID value (duty = 75%)
PWMCFG = 0x55; /IPoint to PWM5 MID MSB
PWMDATA = 0x40; //Set PWM MID MSB = 0x04
PWMCFG = 0x45; //Point to PWM5 MID LSB
PWMDATA = 0x00; //Set PWM MID LSB = 0x00
/[Enable PWMO, PWM1, PWM2, PWM4 & PWM5 Modules
PWMEN = 0x37;
PWMCFG &= 0x1F; /IClear the PWMWAIT bit to initiate
/lthe PWMs operation
while(1);

Y/ End of main

10.3.2 PWM Configuration and Control
Functions

/] //

/I VRS51L3174-PWM_CFG_function_SDCC.c 1
/] I/

// DESCRIPTION: PWM configuration and control Functions
1/-

#include <VRS51L3174_SDCC.h>

1l --- functions prototypes

void PWMConfig(char channel,int endval,int midval);
void PWMdata8bit(char,char);

void PWMdata16bit(char,int);

void delay(unsigned int);

void delay(unsigned int);

void main (void) {
int cptr = 0x00;

/I PERIPHEN2 = 0x02; /[Enable PWM SFR

/ICLEAR All PWM Channels
PWMCFG = 0x20;

1l Configure the PWM prescaler
PWMCLKCFG = 0x00; /I Apply a clock prescaler (div / 1) on all PWM
1/ Configure PWM Polarity
PWMLDPOL = 0x00; //Set all PWM in normal polarity
/IPWM output = 0 until

1/--Configure PWM5 as 8bit resolution, END = 0xFF, PWM MID = 0x000
PWMConfig(0x05, 0xOFF,0x000);

//--Configure PWMO as 8bit resolution, END = OxFFF, PWM MID = 0x0000
PWMConfig(0x02, 0xFFF,0x000);

/IContinuously vary the PWM2 and PWMS5 values

do{
for(cptr = 0xFFO; cptr > 0x00; cptr--)

{

PWMdata16bit(0x02,cptr);
PWMdata8bit(0x05,cptr>>4);
delay(1);

}

Ywhile(1);
Y/ End of main

/.

I e Individual Functions =~ ===--==m==mmmmmmmemmeee
//.

1/- //
1l -- PWMConfig

Vi /
/I Description: configure PWM channel

www.ramtron.com

page 77 of 114

VRS51L3174

rRAM RSN

//. /]

void PWMConfig(char channel,int endval,int midval)

char pwmch;
char pwmready = 0x00;
channel &= 0x07; /IMake sure PWM ch number <=7
/IWait Last configuration to be loaded
dof

pwmready = PWMLDPOL;

}while(pwmready != 0x00);

/[Define PWM Enable section

PERIPHENZ |= 0x02; //[Enable PWM SFR
//--Define the value to put into the PWMEN register
switch(channel)

{

case 0x00 : pwmch = 0x01;
break;

case 0x01 : pwmch = 0x02;
break;

case 0x02 : pwmch = 0x04;
break;

case 0x03 : pwmch = 0x08;
break;

case 0x04 : pwmch = 0x10;
break;

case 0x05 : pwmch = 0x20;
break;

case 0x06 : pwmch = 0x40;
break;

case 0x07 : pwmch = 0x80;
break;

Y/end of switch

PWMEN |= pwmch; //[Enable the Selected channel

/IConfigure PWM END point

PWMCFG = (channel + 0x58); /ISet PWM configuration register to point to
/lthe MSB of End value and set the PWMWAIT bit
/to prevent the PWM configuration to be loaded
/Ibefore the configure sequence is completed
PWMDATA = endval >> 8;
PWMCFG &= OxEF; //Set PWM configuration register to point to
/lthe LSB of End value
PWMDATA = endval;

/IConfigure PWM MID point

PWMCFG = (channel + 0x50); /ISet PWM configuration register to point to
/lthe MSB of MID value and set the PWMWAIT bit
/lto prevent the PWM configuration to be loaded
I/before the configure sequence is completed
PWMDATA = midval >> 8;
PWMCFG &= OxEF; //Set PWM configuration register to point to
/lthe LSB of End value
PWMDATA = midval,

PWMCFG &= 0x3F; //Allows PWM update upon end of next PWM cycle

Ylend of PWMData16bit()

/. //

/I -- PWMdata8bit
1l /!
/I Description: Allow PWM channel data update
i (8bit data)l

//.

void PWMdata8bit(char channel,char pwmdata)

{
channel &= 0x07; //Make sure PWM ch number <=7

/l--check that te last configuration has been loaded

PWMCFG = (channel + 0x40); /\Write new value in PWM Config
/Iprevent PWM configuration to be loaded
/Ibefore the configure sequence is completed
PWMDATA = pwmdata; /Write new Data into the PWM registers

PWMCFG &= 0x3F; /IAllows PWM update upon end of next PWM cycle

Ylend of PWMData8bit()

/. //

/I -- PWMdata16bit
1l //
/I Description: Allow PWM channel data update
i (16bit data)I

//.

void PWMdata16bit(char channel,int pwmdata)
{

channel &= 0x07; /IMake sure PWM ch number <=7
PWMCFG = (channel + 0x50); /ISet PWM configuration register to point to
I/lthe MSB of Data value and set the PWMWAIT bit
//land set the PWMWAIT bit to prevent the
/IPWM configuration to be loaded
/lbefore the configure sequence is completed
PWMDATA = pwmdata >>8;
PWMCFG &= OxEF; //Set PWM configuration register to point to
/lthe LSB of Data value
PWMDATA = pwmdata;

PWMCFG &= 0x3F; /IAllows PWM update upon end of next PWM cycle

Ylend of PWMData16bit()

1; m
/l;- DELAY1MSTO : 1MS DELAY USING TIMERO I
11

//; CALIBRATED FOR 40MHZ n
115
void delay(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

x = PERIPHENT;
x |= 0x01;
PERIPHEN1 = x;

dlaisloop = dlais;
while (dlaisloop > 0)

THO = 0x63;
TLO = 0xCO;

TOT1CLKCFG = 0x00;
TOCON = 0x04;

do{
x=TOCON;
x=x & 0x80;
Jwhile(x==0);

TOCON = 0x00;

dlaisloop = dlaisloop-1;

Ylend of while dlais...

x = PERIPHEN1;

x = x & OxFE;

PERIPHENT1 = x;
Y/End of function delais

/ILOAD PERIPHEN1 REG
/IENABLE TIMER 0

/ITIMERO RELOAD VALUE FOR 1MS AT 40MHZ

/INO PRESCALER FOR TIMER 0 CLOCK

/ISTART TIMER 0, COUNT UP

//Stop Timer 0

/ILOAD PERIPHEN1 REG
/IDISABLEBLE TIMER 0

www.ramtron.com

page 78 of 114

VRS51L3174

rRAM RSN

10.4 Using PWM Modules as Timers

By appropriately configuring the PWMTMREN SFR,
the PWM modules can also operate as general
purpose 16-bit timers. The following table describes
the PWMTMREN register:

TABLE 122: PWM TIMER MODE ENABLE REGISTER - PWMTMREN SFR ADH

The PWM timer flags are raised when the timer
reaches the maximum value set by PWMMIDH and
PWMMIDL. The PWMxTMRF bit must be cleared
manually by the interrupt service routine.

TABLE 124: PWM TIMER FLAGS REGISTER - PWMTMRF SFR AEH

7 6 5 4 3 2 1 0

RW RW RW RW RW RW RW RW

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
PWM 7 Module Operating Mode
7 PWM7TMREN 0 = PWM 7 module is configured as PWM

1= PWM 7 module is configured as timer

PWM 6 Module Operating Mode
6 PWM6TMREN 0 = PWM 6 module is configured as PWM
1 = PWM 6 module is configured as timer

PWM 5 Module Operating Mode
5 PWM5TMREN 0 = PWM 5 module is configured as PWM
1 =PWM 5 module is configured as timer

PWM 4 Module Operating Mode
4 PWM4TMREN 0 = PWM 4 module is configured as PWM
1 = PWM 4 module is configured as timer

PWM 3 Module Operating Mode
3 PWM3TMREN 0 = PWM 3 module is configured as PWM
1 = PWM 3 module is configured as timer

PWM 2 Module Operating Mode
2 PWM2TMREN 0 = PWM 2 module is configured as PWM
1 =PWM 2 module is configured as timer

PWM 1 Module Operating Mode
1 PWM1TMREN 0 = PWM 1 module is configured as PWM
1 =PWM 1 module is configured as timer

PWM 0 Module Operating Mode
0 PWMOTMREN 0 = PWM 0 module is configured as PWM
1 = PWM 0 module is configured as timer

When operating in timer mode, the PWM module timer
will count from 0000h up to the maximum PWM timer
value defined by the PWM MID sub registers, which
are accessible through the PWMCFG register.

TABLE 123: SUMMARY oF PWM MID suB REGISTERS ACCESS

PWMCFG bit PWMCFG bit
PWMLSBMSB PWMMIDEND
PWM timer MSB 0 1
max count value
PWM timer MSB 1 1
max count value

Bit Mnemonic Description

PWM 7 Module Timer Flag
0 = No Overflow
1 =PWM Timer 7 Overflow

7 PWM7TMRF

PWM 6 Module Timer Flag
0 = No overflow
1= PWM Timer 6 Overflow

6 PWM6TMRF

PWM 5 Module Timer Flag
0 = No Overflow
1 = PWM Timer 5 Overflow

5 PWM5TMRF

PWM 4 Module Timer Flag
0 = No Overflow
1 = PWM Timer 4 Overflow

4 PWM4TMRF

PWM 3 Module Timer Flag
0 = No Overflow
1= PWM Timer 3 Overflow

3 PWM3TMRF

PWM 2 Module Timer Flag
0 = No Overflow
1 = PWM Timer 2 Overflow

2 PWM2TMRF

PWM 1 Module Timer Flag
0 = No Overflow
1= PWM Timer 1 Overflow

-

PWM1TMRF

PWM 0 Module Timer Flag
0 = No Overflow
1= PWM Timer 0 Overflow

o

PWMOTMRF

FIGURE 37: PWM As TIMERS OVERVIEW

Div Ratio:
Sys Clk /1
e Downto # s Pin
Sys Clk / 16384

g PWMS5 Module PWMS Pin
g PWM4 Module PWM4 Pin

Div Ratio:
Sys Clk /1
Downto — PWM2 Pin
Sys Clk / 16384

Once the PWM MID value is reached, the PWM timer
overflow is set and the PWM timer rolls over to 0000h.

www.ramtron.com

page 79 of 114

VRS51L3174 rRAMTRSON

PERIPHEN2 |= 0x02; //Enable PWM SFR
10.5 Configuring the PWM Timers HConfigure Port! s output
Configuring the PWM modules to operate in PWM PIPINCEG = O00:
. . . r
timer mode requires the following steps: I/ PWMCFG = 0x20;
i i /I Configure the PWM prescaler
;' éCtl\;_ate the ;WMg\lijNIregllsterk | f PWMCLKCFG = 0x03; 1/ Apply a clock prescaler (div / 8) on PWM 3:0
. Configure e cloc rescaler (i
. g P (/I Configure PWM Polarity
required) PWMLDPOL = 0x00; /iSet all PWM in normal polarity
3. Set the PWMLDPOL register to 00h /IPWM output = 0 until
4. Configure the PWM timer maximum count f1~Gonfigure P as Timer (wil be monitored by paoling)
value by setting the PWM MID sub-registers mer = counts fom PR 0
1 1 i i PWMCFG = 0x10; /IPoint to MSB MID
5. Conflglér)e the PWM timer interrupts (if PWMDATA = OX0':
require
. . PWMCFG = 0x00; [IPoi LSB MID
6. Configure the PWM modules as timers PMDATA = OnFo: omto

7. Enable the PWM modules

/l--Activate the PWM modules and configure the PWM modules as timers
PWMEN |= 0x01;

Follow the code example below to perform these seven PWMTMREN |= 0x01; //Enable PWM 0 as Timer
StepS : //--Configure PWM5 as Timer (will be monitored by interrupt)
) /I PWM Timer 5 counts from 0000 to FOOOh
PWMCFG = 0x15; /IPoint to MSB MID
PERIPHEN2 |= 0x02; /[Enable PWM SFR PWMDATA = OxFO; Vi
/I-Configure the PWM prescaler PWMCFG = 0x05; /IPoint to LSB MID
PWMCLKCFG = 0x03; //Apply a clock prescaler (div / 8) on PWM 3:0 PWMDATA = 0x00;
/I--Configure 'iWM Plolarity)) JI--Configure and enable PWM as timer interrupt to monitor PWM5 only
PWMLDPOL = 0x00; /ISet all PWM in normal polarity INTSRC2 &= OXDF; J/IPWM?7:4 Timer module interrupt
/IPWM output = 0 until INTPINSENS1 = OxDF; /I sensitive on high level(0)
. . INTPININV1 = OxDF; //Set INTO Pin sensitivity on normal level(0)
Z"g\?vnl\;:g#re P\g’M5 ats t'fmef 0000 0 FO00 INTEN2 |= 0x20; J/Enable PWM7:4 timer module interrupt
imer 5 counts from o
PWMCFG =_Ox15;' //Point to MSB MID /I--Activate the PWM modules and configure the PWM modules as timers
PWMDATA = 0xFO; //Set PWM as Timer Max MSB PWMEN |= 0x20; JIEnable PWM 5
PWMCFG = 0x05 /iPoint to LSB MID PWMTMREN |= 0x20; //[Enable PWM 5 as Timer
= 0x05; oint to
PWMDATA = 0x00; //Set PWM as Timer Max LSB GENINTEN = 0x03; /[Enable global interrupt
/I--Configure and Enable PWM as timer Interrupt to monitor PWM5 only while(1){
INTSRC2 &= OxDF; /IPWM7:4 Timer module interrupt
INTPINSENS1 = OxDF; 1 sensitive on high level(0) /IWait for PWMO as timer overflow Flag PWMO timer flag pooled
INTPININV1 = 0xDF; //Set INTO Pin sensitivity on normal level(0) do
INTEN2 |= 0x20; /[Enable PWM?7:4 Timer module interrupt {
flagread = PWMTMREF;
/I--Activate the PWM module and cofigure the PWM modules 5 as timer flagread &=0x01:
PWMEN |= 0x20; /[Enable PWM 5 Jwhile(flagread == 0);
PWMTMREN |= 0x20; //Enable PWM 5 as Timer ’
GENINTEN = 0x03; /fEnable Global interrupt PWMTMRF &= OXFE; /iClear the PWMO Timer Flag
P1=P120x01; /[Toggle P1.0
. }/end of while(1)
10.6 PWMs as Timers Example Programs I End of main

1/- //
- Interrupt INT13 - PWM7:4 as Timer //
//. //

10.6.1 Configuring PWMO0 and PWMS5 as

Timers void INT13Interrupt(void) interrupt 13

char flagread;

The following example program demonstrates how to

PO : INTEN2 = 0x00; /IDisable PWM?7:4 Timer module interrupt
initialize PWMO and PWM5 as general purpose timers, P
and how to monitor the PWM timer’s overflow flags b flagread = PWMTMRF; //Read PWM Timer OV Flags

. . . g y flagread &= 0x20; /ICheck if PWM Timer 5 OV Flag is active
pooling or via an interrupt. if(flagread I= 0x00)

P1 = P120x20; /[Toggle P1.5

1/ I
/I VRS51L3174-PWM_as_Timer1_SDCC.c.c PWMTMRF &= 0xDF; /[Clear the PWM Timer 5 OV Flag
//- //
// DESCRIPTION: PWM as Timer Example Program INTENZ |= 0x20; /[Enable PWM?7:4 Timer module interrupt
" Enable and configure PWM Timer 0 }Ylend of INTO interrupt
A Apply a clock prescaler on PWM Timer 0 (div/8)
4 Enable and configure PWM Timer 5
I Monitor PWM Timer 0 OV Flag by pooling
1 When PWM Timer 0 Overflow, toggle P1.0 pin
" Monitor PWM Timer 5 OV Flag by interrupt
4 When PWM Timer 5 Overflow interrupt occurs toggle P1.5 pin

///. //

#include <VRS51L3174_SDCC.h>
void main (void) {

int cptr = 0x00;

char flagread;

www.ramtron.com page 80 of 114

VRS51L3174

rRAM RSN

11 Enhanced Arithmetic Unit

The VRS51L3174 includes a hardware-based,
calculation engine that executes very fast arithmetic
operations. With the exception of 16-bit division, which
requires 5 cycles, the enhanced arithmetic unit
performs multiplication, addition and data shifting in 1
system clock cycle.

This enables a tremendous performance gain of
approximately 30% to 50% for multiplication and
accumulation and 700% faster for 16-bit division
compared to a standard C compiler when
implementing mathematical and digital signal
processing (DSP) operations.

The enhanced arithmetic unit features:

o Hardware calculation engine

o Calculation result is ready as soon as the input
registers are loaded

o Signed mathematical calculations

o Unsigned MATH operations are possible if the
MUL engine operands are limited to 15 bits in
length

o Auto/manual reload of AU result register

o Easy implementation of complex mathematical
operations

o 16-bit and 32-bit overflow flag

o 32-bit overflow can set an interrupt

o Arithmetic unit operand registers can be
cleared individually or simultaneously

o Overflow flags can be configured to stay active
until manually cleared

o Can store and use results from previous
operations

o Hardware arithmetic unit features a 32-bit
barrel shifter in front of the AURES register,
which can be employed to scale up/down the
result of the operation being performed

o Data shifting operation is performed within the
1 cycle required for multiplication/addition

The arithmetic unit can be configured to perform the
operations in the following figure. It can also perform
data shifting.

FIGURE 38: VRS51L3174 ARITHMETIC UNIT OPERATION

ADD32 + ADD32 —P‘ (AUA, AUB) + AUC = AURES (1 Cycle)
Div16 —ﬁ (AUA/ AUB) = AURES (5 Cycles)
(AUA x AUB) + AUC = AURES (1 Cycle)
> (AUA x AUB) + 0 =AURES (1 Cycle)
MULTA6 + ADD32 (AUA x AUB) + AUPREV =AURES (1 Cycle)
T (AUAXAUA) + AUC =AURES (1 Cycle)
A 4 (AUA x AUA) +0 = AURES (1 Cycle)
(AUA x AUA) + AUPREV =AURES (1 Cycle)

(AUA x AUPREV(16lsb) + AUC =AURES (1Cycle)

(AUA x AUPREV(16Isb) + 0 = AURES (1 Cycle)

(AUA x AUPREV(16Isb) + AUPREV = AURES (1 Cycle)

Where AUA (multiplier), AUB (multiplicand), AUC
(accumulator), AURES (result) and AUPREV (previous
result) are 16-, 16-, 32-, 32- and 32-bits wide,
respectively.

Applications that require arithmetic and DSP
operations will benefit from the execution of such
calculations on the enhanced arithmetic unit. These
include digital filtering, data encryption, sensor output
data processing, lookup table replacement, etc. More
specifically, applications like FIR filtering that require
the repeated execution of 16-bit multiplication and
accumulation will benefit tremendously from the
arithmetic unit.

11.1 Using the Enhanced Arithmetic Unit

The VRS51L3174’s enhanced arithmetic unit operates
in signed binary. Access to its registers is executed via
the SFR registers, located on SFR Page 1. This page
is accessed by setting the SFRPAGE bit of
DEVMEMCEFG register to 0x01. The DEVMEMCFG
register is located at address F6h on both SFR pages.

Before accessing the enhanced arithmetic unit SFR
registers, the module must be enabled. This is done
by setting AUEN bit 5 of the PERIPHEN2 register to 1.
AUEN bit 5 is located at address F5h on both SFR
pages.

www.ramtron.com

page 81 of 114

VRS51L3174

rRAM RSN

11.2 Arithmetic Unit Control Registers

With the exception of the barrel shifter, the arithmetic
unit’s operation is controlled by two SFR registers:

o AUCONFIG1
o AUCONFIG2

The following tables describe these control registers:

TABLE 125: ARITHMETIC CONFIG REGISTER 1 — AUCONFIG1 SFR C2H

TABLE 126: ARITHMETIC CONFIG REGISTER 2 — AUCONFIG2 SFR C3H

7 6 5 4 3 2 1 0
w w w R/W R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
75 AUREGCLR Read: Always read as 0
[2:0] Arithmetic Unit Operand Registers Clear
000 = No clear

001 = Clear AUA

010 = Clear AUB

011 = Clear AUC

100 = Clear AUPREV

101 = Clear all AU module registers and
overflow flags

110 = Clear overflow flags only

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 CAPPREV Read: Always Read as 0

Capture Previous Result Enable

0 = Previous result capture is disabled

1 = Capture the previous result if CAPMODE bit
is setto 1

4 AUINTEN Arithmetic Unit Interrupt Enable
0 = Arithmetic unit interrupt is disabled
1 =-Arithmetic unit interrupt is enabled in divider

mode

Not used, Read as 0

6 CAPMODE 0 = The capture of previous result is automatic
each time a write operation is done to the AUO
1 = The capture of the previous result is manual

and occurs when the CAPPREYV bit is set to 1

2 DIVOUTRG AU division is out of range flag
This flag is set if AUB = 0x0000 or (AUA =

0x8000 and AUB = OxFFFF)

5 OVCAPEN Capture Result on 32-Bit Overflow
0 = No result capture is performed
1 = The AU result is captured and stored when

a 32-bit overflow condition occurs

1 AUOV16 Arithmetic Unit 16-Bit Overflow Flag

0 = No 16 bit overflow condition detected

1 = a 16-bit overflow occurred

Will occur if there is a carry on from bit 15 to bit

1,6 but also from bit 31 to bit 32

4 READCAP Read Stored Result
0 = AURES contains current operation result

1 = AURES contains previous result

0 AUOV32 Avrithmetic Unit 32-Bit Overflow Flag
0 = No 16 bit overflow condition detected

1 = Operation result is larger than 32 bits

3:2 ADDSRCI1:0] | AU Adder Inputn

32-bit Addition Source
B Input
00 =0 (No Add)
01 =C (std 32-bit reg)
10 = AUPREV
11 = AUC (std 32-bit reg)
A Input
00=Multiplication
01=Multiplication
10=Multiplication
11= Concatenation of {A, B} + C for 32-bit
addition

1:0 MULCMDI[1:0] | AU Multiplication Command

00 = AUA x AUB
01 =AUA x AUA
10 = AUA x AUPREV (16 LSB)
11 = AUA x AUB

Notes

In Divider Mode

MULTA_IN = MULT_IN = 0x0000

In Multiplier Mode

DIVA_IN = 0x0000 and DIVB_IN = 0x0001

11.3 Arithmetic Unit Data Registers

The arithmetic unit data registers include operand and
result registers that serve to store the numbers being
manipulated in mathematical operations. Some of
these registers are uniquely for addition (such as
AUC), while others can be used for all operations. The
use of the arithmetic unit operation registers is
described in the following sections.

11.4 AUA and AUB Multiplication
(Addition) Input Registers

The AUA and AUB registers serve as 16-bit input
operands when performing multiplication.

When the arithmetic unit is configured to perform 32-bit
addition, the AUA and the AUB registers are
concatenated. In this case, the AUA register contains
the upper 16 bits of the 32-bit operand and the AUB
contains the lower 16 bits.

TABLE 127: ARITHMETIC UNIT A REGISTER BIT [7:0] - AUAO SFR A2H

7 6 5 4 3 2 1 0
RW RW RIW RIW RIW RIW RW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUA[7:0] LSB of the A Operand Register

www.ramtron.com

page 82 of 114

VRS51L3174

rRAM RSN

TABLE 128: ARITHMETIC UNIT A REGISTER BIT [15:8]- AUA1 SFR A3H

TABLE 135:ARITHMETIC UNIT C REGISTER BIT [31:24] - AUC3 SFR A7H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUA[15:8] MSB of the A Operand Register

TABLE 129:ARITHMETIC UNIT B REGISTER BIT [7:0] - AUBO SFR B2H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RIW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUCI[31:24] Bit [31:24] of the C Operand Register

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUB[7:0] LSB of the B Operand Register for Multiplication

and Addition Operations

TABLE 130: ARITHMETIC UNIT DivisioN MoDE ReGISTER — AUBODIV SFR B1H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW RW RW
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7:0 AUBODIV[7:0] | Writing to this byte instead of AUBO will set the

arithmetic unit to divisor mode

TABLE 131: ARITHMETIC UNIT B REGISTER BIT [15:8] - AUB1 SFR B3H

7 6 5 4 3 2 1 0
RIW RIW RW RIW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUB[15:8] MSB of the B Operand Register

11.5 AUC Input Register

The AUC register is a 32-bit register used to perform
32-bit addition. The AUPREV register can be
substituted with the AUC register or by 0 in the 32-bit
addition.

TABLE 132: ARITHMETIC UNIT C REGISTER BIT [7:0] - AUCO SFR A4H

7 6 5 4 3 2 1 0
RIW RIW RW RW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUCI7:0] Bit [7:0]of the C Operand Register

TABLE 133: ARITHMETIC UNIT C REGISTER BIT [15:8] - AUC1 SFR A5H

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUCI[15:8] Bit [15:8] of the C Operand Register

TABLE 134:ARITHMETIC UNIT C REGISTER BIT [23:16] - AUC2 SFR A6H

7 6 5 4 3 2 1 0
RIW RIW R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description

7:0 AUC[23:16] Bit [23:16] of the C Operand Register

11.6 The Arithmetic Unit AURES Register

The AURES register, which is 32 bits wide, is read-only
and contains the result of the last arithmetic unit
operation. The AURES register is located at the output
of the barrel shifter.

When the arithmetic unit is configured to perform
multiplication and/or addition, the AURES operates as
a 32-bit register that contains the result of the previous
operation(s).

However when the arithmetic unit has performed a 16-
bit division, the upper 16 bits of the AURES register
contain the quotient of the operation, while the lower
16 bits contain the remainder of the division operation.

The barrel shifter is deactivated when the arithmetic
unit is performing 16-bit division.

Four SFR registers located in SFR Page 1 provide
access to the arithmetic unit AURES register.

TABLE 136: ARITHMETIC UNIT RESULT REGISTER BIT [7:0] - AURESO SFR B4+

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description

7:0 AURESJ[7:0] Bit [7:0]of the RESULT Register

TABLE 137: ARITHMETIC UNIT RESULT REGISTER BIT [15:8] - AURES1 SFR 5H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0

Bit Mnemonic Description

7:0 AURES[15:8] Bit [15:8] of the RESULT Register

TABLE 138: ARITHMETIC UNIT RESULT REGISTER BIT [23:16] - AURES2 SFR B6H

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AURES[23:16] Bit [23:16] of the RESULT Register
TABLE 139: ARITHMETIC UNIT RESULT REGISTER BIT [31:24] - AURES3 SFRB7H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AURES[31:24] Bit [31:24] of the RESULT Register
11.7

www.ramtron.com

page 83 of 114

VRS51L3174

rRAM RSN

11.8 AUPREV Register

The AUPREYV register can automatically or manually
save the contents of the AURES register and re-inject
it into the calculation. This feature is especially useful
in applications where the result of a given operation
serves as one of the operands for the next one.

As previously mentioned, there are two ways to load
the AUPREV register. This is controlled by the
CAPMODE bit value as follows:

CAPMODE = 0:
Auto AUPREV load, by writing into the AUAO register.
Selected when CAPPREV = 0.

CAPMODE = 1:
Manual load of AUPREV when the CAPPREYV bit is set
to 1.

Auto loading of the AUPREYV register is useful in FIR
filter calculations. For example, it is possible to save a
total of eight MOV operations per tap calculation.

TABLE 140: ARITHMETIC UNIT PREVIOUS RESULT BIT [7:0] - AUPREVO SFR C4H

11.9 Multiplication and Accumulate
Operations
The multiplication and accumulate operations of the

arithmetic unit are defined by the MULCMD[1:0] and
ADDSRC]1:0] bits of the AUCONFIG1 register.

TABLE 144: MULTIPLICATION OPERATIONS VS. MULCMD BiT oF THE AUCONFIG1

MULCMDI1:0] Multiplication Operation

00 AUA x AUB
01 AUA x AUA
10 AUA x AUPREV (16LSB)
11 AUA x AUA

TABLE 145: ADDITION OPERATIONS VS. ADDSRC BIT oF THE AUCONFIG1

ADDSRCI1:0] Addition operation

00 No addition

01 AUC

10 AUPREV[31:0]

11 32-bit addition of

[AUA,AUB] + AUC

7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUPREV[7:0] Bit [7:0]of the Previous Result Register
TABLE 141:ARITHMETIC UNIT PREVIOUS RESULT BIT [15:8] - AUPREV1 SFR C5H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUPREV[15:8] Bit [15:8] of the Previous Result Register
TABLE 142: ARITHMETIC UNIT PREVIOUS RESULT BIT [23:16] - AUPREV2 SFR C6H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUPREV[23:16] | Bit [23:16] of the Previous Result Register
TABLE 143:ARITHMETIC UNIT PREVIOUS RESULT BIT [31:24] - AUPREV3 SFR C7H
7 6 5 4 3 2 1 0
R R R R R R R R
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7:0 AUPREV[31:24] | Bit [31:24] of the Previous Result Register

The following figure provides a block diagram
representation of the arithmetic unit operation for
multiplication and addition.

FIGURE 39: ARITHMETIC UNIT MULTIPLICATION AND ADDITION OVERVIEW

Adder1

MSB LsSB
[Auat | auso | aust | Auso

Multiplicand 1 Multiplicand 2

MSB LSB MSB LsB
Auat | Auao | X’i [

Barrel Shifter

-

AUB(1:0)

AUSHIFTCFG
32 bit Add
{AUA AUB}

A AURES(3:0)
MSB LsB

MULCMD{1:0} ADDSRC{1:0}

The following table provides examples of the
AUCONFIG and AUSHIFTCFG register values and the
corresponding math operations performed by the
arithmetic unit. It also provides the value that would be
present in the AURES register if the arithmetic unit
input registers were initialized to the following values:

AUA = 3322h

AUB =4411h

AUC = 11111111h
AUPREYV = 12345678h

www.ramtron.com

page 84 of 114

VRS51L3174

rRAM RSN

TABLE 146:CONFIGURATION OF THE ARITHMETIC UNIT, OPERATION AND OUTPUT RESULT

AUCONFIG1 | AUSHIFTCFG | Operation AURES
01h 00h AUA x AUA 0A369084h
00h 00h AUA x AUB 0D986D42h
03h 00h AUA x AUB 0D986D42h
02h 00h AUA x AUPREV15:0 114563F0h
0Ch,0Dh,0Eh | 00h (AUA,AUB) +AUC] 44335522h
,0Fh 32 bit addition
04h, 07h 00h (AUA x AUB)+ 1EA97E53h
AUC
04h, 07h 01h ((AUA x AUB)+ 3D52FCABh
AUC) x 2 (shift 1
left)
04h, 07h 3Eh ((AUA x AUB)+ 7AA5F94h
AUC)/ 4

(shift 2 right)

Multiplication and accumulate operations take place
within one system clock cycle.

11.10 Division Operation (AUA /
AUB1:AUBODIV)

The VRS51L3174 arithmetic unit can be configured to
perform 16-bit division operations: the division of AUA
by AUB1,AUBODIV. The quotient of this operation is
stored in the AURESS3, AURES2 registers, with the
remainder stored in the AURES1, AURESO registers
The following figure represents a 16-bit division.

FIGURE 40: ARITHMETIC UNIT DIVISION OVERVIEW

Division operation is

riggered by writing LSB
. i of divisor into the
Dividend Divisor / AUBODIV register
MSB LSB ‘ LSB

AUAT] AUAO ‘ ATJSBB1] AUBODIV ‘
Quotient Remainder
MSB LSB MSB LSB
[AURES3 | AURES2 | | AUREST | AURESO |

Writing the LSB of the divisor into the AUBODIV
register will trigger a division operation. Once the
division starts, the value written in the AUBODIV
register will be automatically transferred into the AUBO
register.

This operation is neither affected by the barrel shifter
nor the multiplication/addition operation, defined by the
AUCONFIG register.

The division operation takes five system clock cycles
to be complete.

11.11 Barrel Shifter

The arithmetic unit includes a 32-bit barrel shifter at the
output of the 32-bit addition unit. The barrel shifter is
used to perform right/left shift operations on the
arithmetic unit output. The shift operation takes only
one cycle.

The barrel shifter can be used to scale the output result
of the arithmetic unit.

The shifting range is adjustable from 0 to 16 in both
directions. The “shifted” value can be routed to:

o AURES
o AUPREV
o AUOV32

Moreover, the shift left operation can be configured as
an arithmetic or logical shift, in which the sign bit is
discarded.

TABLE 147: ARITHMETIC UNIT SHIFT REGISTER CONFIG - AUSHIFTCFG SFR C1H

7 6 5 4 3 2 1 0
RIW RIW RW RIW RW RIW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 SHIFTMODE AU Barrel SHIFTER Shift Mode

0 = Shift value is unsigned
1 = Shift value is signed

6 ARITHSHIFT AU Arithmetic Shift Enable

0 = Left shift is considered as logical shift
(sign bit is lost)

1 = Left shift is arithmetic shift where sign bit
is kept

5:0 SHIFT[5:0] The value of SHIFT[5:0] equals the amplitude of
the shift performed on the arithmetic unit result
register AURES

Positive value represent shift to the left

Negative value represent shift to the right

The barrel shifter section operates independently of
the multiply and accumulate sections on the arithmetic
unit. As such, if the AUSHIFTCFG register bits 5:0 are
set to a value other than 0, the value of AUPREV, if
derived from the AURES register either automatically
or manually, will be affected by the barrel shifter.

When the arithmetic unit is configured to perform
multiplication and addition operations, the barrel shifter
is active and the shift operation performed depends on
the current value of the AUSHIFTCFG register. When
the arithmetic unit is configured to perform 16-bit
division, the barrel shifter is deactivated.

www.ramtron.com

page 85 of 114

VRS51L3174 rRAMTRSON

11.12 Arithmetic Unit Block Diagram

The following block diagram provides a hardware description of the registers and the other components that comprise
the arithmetic unit on the VRS51L3174.

FIGURE 41: ARITHMETIC UNIT FUNCTIONAL DIAGRAM

Multiplication / Addition
(Caddsre)

Concatenation
(A.B)

SFR registers _(avovaz)

@ B
ADD SFR registers
Cortea oy QQ
AUA1 (MSB) ™

—¥ — AURES
AURES3 (MSB)

AURES
MUL AUOV16 SHIFT (SFR regs)
AUB
(Signed)
L ADD

mulcmd —

AUC

AURES2

AUB1 (MSB)

AURESH1

0
—»

AUAQ load
CAPPREV

[
[AUAO (LSB)
|
[

|
g

AUBO (LSB)

AUBODIV (LSB)
*For Division Operations Onl\ (16 LSB)

AURESO (LSB)

Stored
Result
Previous

AUPREV | g

load

yy

)
]
J
]
AUPREV3 (MSB)]
)
)
)

AN NN YY)

[AUPREV2
AUC3 (MSB)] -
AUPREV1
[AUC2] 16 bit Division
AUPREVO (LSB)
[AUC1 J |
[AUCO (LSB) J

by
AUB
Au (Signed) | _Remainder _ AURES(1:0)
e |Remainder

AUCONFIG1 J

AUCONFIG2

[AUSHIFTCFG }

www.ramtron.com page 86 of 114

VRS51L3174

rRAM RSN

11.13 Arithmetic Unit Example Programs

11.13.1 Basic Arithmetic Operations Using the
Arithmetic Unit

The following example program demonstrates the
required arithmetic unit configuration to perform
mathematical operations

/I /
/I VRS51L3174_MULTACCU1_SDCC.c //
//-

/I DESCRIPTION: VRS51L3174 Arithmetic Unit Demonstration Program
l

/I /
#include <VRS51L3174_SDCC.h>

//. /

l MAIN FUNCTION

1]. /

void main (void) {
PERIPHEN2 = 0x20;

/IEnable Arithmetic Unit

DEVMEMCEFG = 0x01; /ISELECT SFR PAGE 1

/IConfigure Arithmetic Unit to perform math operations
/[Place Value in AUA

AUA1 = 0x33;
AUAO = 0x22;

/[Place Value in AUB
AUB1 = 0x44;
AUBO = 0x11;

/[Place Value in AUC

AUC3 = 0x11;
AUC2 = 0x11;
AUC1 = 0x11;
AUCO = 0x11;

/[Place Value in AUPREV
AUPREV3 = 0x12;
AUPREV2 = 0x34;
AUPREV1 = 0x56;
AUPREVO = 0x78;

//--Some operation examples--

/I To perform: [(AUAXAUA)+0]
AUCONFIG1 =0x01; //Set operation (AUA x AUA) + 0

/IAURES = 0A369084h

/I To perform: [(AUAXAUB)+0]

AUCONFIG1 = 0x00; //Set operation (AUA x AUB) + 0
/IAURES = 0D986D42h

I/l or

AUCONFIG1 =0x03; //Set operation (AUA x AUB) + 0
/IAURES = 0D986D42h

/ To perform: [(AUA x AUPREV[15:0]))+0]
AUCONFIG1 =0x02; //Set operation (AUAXAUPREV)+0
/IAURES = 114563F0h

/l To perform: [(AUA,AUB) + AUC] 32 bit addition
AUCONFIG1 =0x0C; /ISet operation (AUA,AUB)+ AUC
/IAURES = 44335522h

llor...

AUCONFIG1 =0x0D; /ISet operation (AUA,AUB)+ AUC
/IAURES = 44335522h

llor...

AUCONFIG1 = 0x0E; /ISet operation (AUA,AUB)+ AUC
/IAURES = 44335522h

llor...

AUCONFIG1 = 0xO0F; //Set operation (AUA,AUB)+ AUC
/IAURES = 44335522h

/I To perform: [(AUA x AUB)+ AUC] No shift
AUCONFIG1 = 0x04; /ISet operation (AUA x AUB)+ AUC
AUSHIFTCFG = 0x00; /INo Shift

/IAURES = 1EA97ES53h

/I To perform: [(AUA x AUB)+ AUC] x 2 (Shift one LEFT)
AUCONFIG1 = 0x04; /ISet operation (AUA x AUB)+ AUC
AUSHIFTCFG = 0x01; /ISet barrel shifter to perform one SHIFT LEFT (logical)
//No need to preset the AUSHIFTCFG register for every
/loperations
/IAURES = 3D52FCA6h

I To perform: [(AUA x AUB)+ AUC]/ 2 (Shift one Right)

AUCONFIG1 = 0x04; //Set operation (AUA x AUB)+ AUC

AUSHIFTCFG = 0x3F; /ISet barrel shifter to perform one SHIFT right
/INo need to preset the AUSHIFTCFG register for every
/loperations

/IAURES = F54BF29h

DEVMEMCFG = 0x00; /ISELECT SFR PAGE 0

while(1);
¥/ End of main

11.13.2 FIR Filter Function

The following example program shows the
implementation of a FIR filter computation function for
one iteration; a data shifting operation; and the
definition of the FIR filter coefficient table. The FIR
computation algorithm is simple to implement, but
requires a lot of processing power. For each new data
point, multiplication with the associated coefficients
and addition operations must be performed N times
(N=number of filter taps).

Since it is hardware-based, the VRS51L3174
arithmetic unit is very efficient in performing operations
such as FIR filter computation. In the example below,
the COMPUTEFIR loop is the “heart” of the FIR
computation. Note that because of the arithmetic unit's
features, very few instructions are needed to perform
mathematical operations and the calculation results are
ready at the next instruction. This provides a dramatic
performance improvement when compared to having
to perform all math operations manually, using general
processor instructions.

/. /l

/I VRS51L3174_AU_FIR_asm_c_-SDCC.c //
1].

i

// DESCRIPTION: FIR filter demonstration program - mixed ASM and C coding to optimize
the FIR loop speed.

i

I This program demonstrates the configuration and use of the SPI interface

" for interface to serial 12-bit A/D and D/A converters.

" The program reads the A/D and outputs the read value on a D/A converter

I

I At 40MHzm the 16-tap FIR loop + data shifting of the VRS51L3174 provide the
" following performances:

/i

" FIR computation using AU module (asm) = 10.4 uSeconds

I Data shifting (asm) = 17.2 useconds

" FIR Computation + Datashift = 27.6 uSeconds (1/T = 36.2 KHz)

/I Rev 1.0
/I Date: August 2005
//. //

#include <VRS51L3174_SDCC.h>

/I--FIR Filter Coefficient Tables
/I;FSAMPLE 480HZ, N=16, LOW PASS 0.1HZ -78DB @ 60HZ

const int flashfircoef[] =
{0x023D,0x049D,0x086A,0x0D2D,0x1263,0x1752,0x1B30,0x1D51,
0x1D51,0x1B30,0x1752,0x1263,0x0D2D,0x086A,0x049D,0x023D};
/I-- Global variables definition

int at 0x30 fircoef[16];

int at 0x50 datastack[16];

www.ramtron.com

page 87 of 114

VRS51L3174

rRAM RSN

unsiged int at 0x75 dacdata;

/l---- Functions Declaration ----//
/- FIR Filter computation function
void FIRCompute(void);

void CopyFIRCoef(void);

//--Gen_ADC
void ReadGen_ADC(void); I

/I- Gen_DAC
void WriteGen_DAC(unsigned int);

//---Generic functions prototype
void V2KDelay1ms(unsigned int); //Standard delay function

/I Global variables definitions
idata unsigned char cptr = 0x00;

unsigned int adcdata = 0x00;

//. //

Hemmmme MAIN FUNCTION = ------meeeeemeee//
//- //
void main (void) {
PERIPHEN2 |= 0x02;
P2PINCFG = 0xFO0; //P2[3:0] is output
PWMCLKCFG = 0x10; /IPWM Timer 7 Prescaler = Sys Clock / 2
//--Configure PWM?7 as timer (will be monitored by interrupt)

/[Enable PWM SFR

/I PWM Timer 7 counts from 0000 to A2C2h
PWMCFG = 0x17; /[Point to MSB MID
PWMDATA = 0xA2

PWMCFG = 0x07;
PWMDATA = 0xC2;

/IPoint to LSB MID

//--Configure and enable PWM as timer Interrupt to monitor PWM5 only
INTSRC2 &= 0xDF; /IPWM?7:4 Timer module Interrupt
INTPINSENS1 = 0xDF; /I sensitive on high level(0)

INTPININV1 = 0xDF; //Set INTO Pin sensitivity on normal level(0)
INTEN2 |= 0x20; //[Enable PWM?7:4 Timer module interrupt

/I-- Copy FIR filter coefficients to IRAM
CopyFIRCoef();

/I--Activate the PWM modules and configure the PWM modules as timers
PWMEN |= 0x80; //[Enable PWM 7

PWMTMREN |= 0x80; //[Enable PWM 7 as Timer

GENINTEN = 0x01; //[Enable global interrupt

while(1);

Y/ End of main
//- //

/-~ Interrupt Function----- -~
1/-

//-
/I NAME: INT13Interrupt PWMTMR7:4 as Timer
1/-

void INT13Interrupt(void) interrupt 13
char flagread;
INTEN2 = 0x00; //Disable PWM7:4 Timer module interrupt

flagread = PWMTMREF;

flagread &= 0x80;
if(flagread != 0x00)

/lIread PWM Timer OV Flags
Ilcheck if PWM Timer 7 OV Flag is Active

{

P2 = P270x01; /IToggle P2.0 (test)

ReadGen_ADC(); //IRead the A/D Converter

FIRCompute(); //Perform the FIR filter computation and write into DAC

PWMTMRF &= 0x7F;
INTEN2 |= 0x20;
Ylend of PWM as timer interrupt

/IClear the PWM Timer 7 OV Flag
//[Enable PWM?7:4 Timer module interrupt

/. //

Jfemmmmmmmmeeee e Individual Functions -----------------n-n------//
//. //

/I NAME: FIRCompute
//.

void FIRCompute()
{

char *coef = &fircoef;
char *ydata = &datastack;
char fircptr = 0x00;

PERIPHEN2 |= 0x20; //Enable the Arithmetic Unit

P2 = OxFF; //Set P2 = OxFF to monitor duration for FIR Loop
*ydata = adcdata & OxOFF; //Store the LSB of adc read data
ydata += 1;

*ydata = (adcdata >> 8)&0x00FF; //Store the MSB of adc read data

DEVMEMCFG = 0x01; /ISwitch to SFR Page 1

AUCONFIG1 = 0x08; /ICAPREV =0 : Previous Res capture is automatic
/ICAPMODE = 1 : Capture of previous Result
I/loccurs when AUAQO is written into
//IOVCAPEN = 0 : Capture on OV32 disabled
/IREADCAP =0 : AURES contains current result
/IADDSRC =10 :Add SCR = AUC
/IMULCMD =00 : Mul cmd = AUA x AUB

AUCONFIG2 = 0xA0; /[Clear the Arithmetic Unit registers

_asm
MOV RO,#0x30; //Copy Start address of FIR Coefficient Table into RO
MOV R1,#0x50; //Copy Start address of FIR Data Table into R1
_endasm;

/1 'Yn Computation mostly in assembler -- Faster...
for(fircptr = 0; fircptr < 16; fircptr++)
{
_asm
MOV 0xA2,@RO0;
INC RO;
MOV 0xA3,@RO0;
INC RO;
MOV 0xB2,@R1;
INC R1;
MOV 0xB3,@R1;
INC R1;
_endasm;
}Ylend of For cptr

I/lcopy LSB of pointed coefficient to AUAO
/lcopy MSB of pointed coefficient to AUA1
Ilcopy LSB of pointed coefficient to AUBO

/lcopy MSB of pointed coefficient to AUB1

/I-- Performing the data stack shifting allows to save 8.8uS @ 40MHz
_asm

MOV RO,#0x6F;

MOV R1,#0x71;

_endasm;

for(fircptr = 16; fircptr > O; fircptr--)
{

_asm
mov A,@RO;

mov @R1,A;

dec RO;

dec RfT;

mov A,@RO;

mov @R1,A;

dec RO;

dec RfT;

_endasm;

}Ylend of shift for loop

//-Scale down the AURES output by 16 using the barrel shifter

1/ the coefficient had been scaled up by a factor of 65536

AUSHIFTCFG = 0x30;

_asm

NOP;

_endasm;

P2 = 0x00; /ISet P2 = 0x00 to signal the end of the FIR Loop

dacdata = (AURES1 << 8) + AURESO;

//IReset the Barrel shifter

AUSHIFTCFG = 0x00;

/I Note:

/I In this case, 6 System clock cycles could be saved

/I by reading AURES3 and AURES?2 directly
DEVMEMCFG = 0x00; /ISwitch to SFR Page 0
WriteGen_DAC(dacdata); //Write data to SPI DAC
}/End of FIRCompute

www.ramtron.com

page 88 of 114

VRS51L3174

rRAM RSN

//.

/I NAME: CopyFIRCoef
//-

/I DESCRIPTION: Copy the FIR Filter Coefficient into
SRAM variable which is faster access

I than Flash
//-
void CopyFIRCoef(void)

{

char cptr = 0x00;

for(cptr = 0x00; cptr < 16; cptr++)
fircoef[cptr]= flashfircoef[cptr];
Y/End of CopyFIRCoef

//-
/I NAME: ReadGen_ADC
1/-

// DESCRIPTION: Read the Gen_ADC A/D
/I ADC is connected to SPI interface using CS0
1 Max clk speed is 3.2MHz, Fosc = 40MHz assumed

1

void ReadGen_ADC()

{
int cptr = 0x00;
char readflag = 0x00;

/ISPI Configuration Section

/(Can be moved to Main function if only one device is connected to the SPI interface)

PERIPHEN1 |= 0xCO; /IMake sure the SPI interface is activated

/I--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS &= 0x08));

SPICTRL = 0x65; /ISPICLK = /16 (2.5MHz)
//ICS0 Active
/ISPI Mode 1 Phase =1, POL=0
/ISP Master Mode

SPICONFIG = 0x40; /ISPI Chip select is automatic
/[Clear SPIUNDEFC flag
/ISPILOAD = 0 -> Manual CS3 behaviour
//No SPI interrupt used
SPISTATUS = 0x00; //SPI transactions are in MSB first format
SPISIZE = 0x0E; /ISPI transaction size are 15-bit

/I-Dummy Read the SPI RX buffer to clear the RXAV flag
readflag = SPIRXTXO;

/I-Perform the SPI read

SPIRXTXO0 = 0x00; /IWriting to the SPIRXTXO will trigger the SPI
/[Transaction

//Wait for the SPI RX AV Flag being set

while(!(SPISTATUS &= 0x02));

I

/I - It is possible to monitor the SPINOCS flag instead of the SPIRXAV flag
/[The code piece below shows how to do it. However in that case,

/INo that the reading of the SPISTATUS register must be done at

/Neast 4 system clock cycles after the write operation to the SPIRXTXO register

/I-Wait for SPINOCS Flag have time to be updated
_asm

NOP;

_endasm;

/I--Wait activity stops on the SPI interface
while(!(SPISTATUS &= 0x08));
*/

/IRead SPI data

adcdata= (SPIRXTX1 << 8);

adcdata+= SPIRXTXO0;

adcdata&= OxOFFF; Ilisolate the 12 Isb of the read value
Ylend of ReadGen_ADC

//.

/I NAME: WriteGen_DAC
1].

// DESCRIPTION: Write 12bit Data into the Gen_DAC device
ADC is connected to SPI interface using CS1
A Max clk speed is 12.5MHz, Fosc = 40MHz assumed
I We will set the SPI prescaler to sysclk / 8
"
void WriteGen_DAC(unsigned int dacdata)

{
char subdata = 0x00;
char readflag = 0x00;

PERIPHENT1 |= 0xCO; /IMake sure the SPI interface is activated

/I--Wait activity stops on the SPI interface (Monitor SPINOCS)
while(!(SPISTATUS &= 0x08));

//SPI Configuration Section

//ICan be moved to main function if only one device is connected to the SPI interface

SPICTRL = 0x4D; /ISPICLK = /8 (MHz)
//CS1 Active
/ISPI Mode 1 Phase = 1, POL =0
/ISPI Master Mode

SPICONFIG = 0x40; /ISPI Chip select is automatic
/IClear SPIUNDEFC Flag
/ISPILOAD = 0 -> Manual CS3 behaviour
//No SPl interrupt used

SPISTATUS = 0x00; //SPI transactions are in MSB first format
SPISIZE = 0x0B; /ISPI transaction size are 12 bit

//-Format the 12 bit data so data bit 11 is positioned on bit 7 of SPIRXTX0

/I and data bit 0 is positioned on bit 4 of SPIRXTX1 and perform the SPI write operation

dacdata &= OxOFFF; /IMake sure dacdata is <= OFFFh (12 bit)
SPIRXTX3 = 0x00;

SPIRXTX2 = 0x00;

SPIRXTX1 = (dacdata << 4)& OxFO;

/I-Dummy read the SPI RX buffer to clear the RXAV Flag (facultative if SPINOCS is

monitored)
readflag = SPIRXTXO0;

SPIRXTXO0 = (dacdata >> 4); //Writing to SPIRXTXO will trigger the transmission

//--Wait the SPI transaction completes
/I This section can be omitted if a check of activity on the SPI interface
/I is made before each access to it in master mode

//Wait for the SPI RX AV flag being set

while(/(SPISTATUS &= 0x02));

/I -- It is possible to monitor the SPINOCS flag instead of the SPIRXAV flag
/IThe code piece below shows how to do it. However in that case,

//No that the reading of the SPISTATUS register must be done at

Nleast 4 system clock cycles after the write operation to the SPIRXTXO register
”

/I-Wait for SPINOCS flag have time to be updated
_asm
NOP;
_endasm;
/I--Wait activity stops on the SPI interface (monitor SPINOCS Flag)
while(!(SPISTATUS &= 0x08));
*

}Ylend of WriteGen_DAC

//. //
/I NAME: V2KDelay1ms
//-

// DESCRIPTION: VRS3174 specific 1 millisecond delay function
Using Timer 0 and calibrated for 40MHz oscillator

1/-

void V2KDelay1ms(unsigned int dlais){

idata unsigned char x=0;

idata unsigned int dlaisloop;

PERIPHENT1 |= 0x01; /ILOAD PERIPHEN1 REG

dlaisloop = dlais;
while (dlaisloop > 0)

THO = 0x63; /ITIMERO RELOAD VALUE FOR 1MS AT 40MHZ
TLO = 0xCO;
TOT1CLKCFG = 0x00; /INO PRESCALER FOR TIMER 0 CLOCK
TOCON = 0x04; /ISTART TIMER 0, COUNT UP

dof

x=TOCON;

x=x & 0x80;

Iwhile(x==0);

TOCON = 0x00; //Stop Timer 0
dlaisloop = dlaisloop-1;
}/end of while dlais...

PERIPHEN1 &= OXFE; /IDisable Timer 0
Y/End of function V2KDelay1ms

www.ramtron.com

page 89 of 114

VRS51L3174

rRAM RSN

12 Watchdog Timer

The VRS51L3174 includes a watchdog timer which
resets the processor in case of a program malfunction.
The watchdog timer is composed of a 14-bit prescaler,
which derives its source from the active system clock.
An overflow of the watchdog timer resets the
VRS51L3174. The WDTCFG SFR register controls the
watchdog timer operations.

TABLE 148: THE WATCHDOG TIMER REGISTER - WDTCFG 91H

7 6 5 4 3 2 1 0
RIW RIW RW RW RW RW RW RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description

74 WDTPERIOD | Watchdog Timer Period Configuration
*see table below

3 WTIMEROVF WDT as Timer Overflow Flag
0 = WDT as timer as not expired
1 =WDT as timer has overflow

2 ASTIMER Watchdog as Timer
0 =WDT mode
1 =WDT operate as a regular timer (no reset)

Writing to this bit will clear the timer

1 WDTOVF Read:
0 = Watchdog is counting
1 = Watchdog timer period has expired

Write:
0 = No action
1 = Clear the watchdog timer flag

0 WDTRESET Read: No Action

Watchdog Timer Reset

To reset the watchdog timer, two consecutive
writes to the WDTRESET bit must be made:
First clear the WDTRESET bit and second, set it
to 1

12.1 WDT Timeout Period

The watchdog timer timeout period is controlled by
adjusting bit 7:4 of the WDTCFG register. The
following table provides the approximate timeout vs.
the selected WDTPERIOD. The WDT timeout period is
not affected by the clock divider.

TABLE 149: WATCHDOG TIMER REGISTER TIMEOUT PERIOD

WDTPERIOD Actual WDT Approx
Value (4 bit) Period** Timeout**
(40MHz)

0000 Ox3FFF* 819-1000 us
0001 Ox3FFE 1.23-1.36 ms
0010 0x3FFD 2.05-22ms
0011 0x3FFB 4.92 ms
0100 0x3FF4 9.83 ms
0101 Ox3FE8 20.07 ms
0110 0x3FCF 49.97 ms
0111 0x3F86 74.96 ms
1000 0x3F49 99.94 ms
1001 0x3F0C 249.86 ms
1010 0x3E9E 500.12 ms
1011 0x3B3B 749.98 ms
1100 0x38D9 999.83 ms
1101 0x3677 2.99s
1110 0x2364 6.71s
1111 0x0000 134s

*Not available in timer mode

The watchdog timer timeout period is calculated as
follows:

WDT Period* = 2*16384*(0x4000 — WDTPERIOD[3:0])

Fosc

*For a given configuration, the timeout period of the
watchdog timer may vary by about 200us. This delay
is caused by internal timing of the watchdog timer
module.

12.2 Resetting the Watchdog Timer

To reset the watchdog timer, two consecutive write
operations to the WDTCFG register must be
performed. During the first write operation, the
WDTRESET bit must be cleared. During the second
write operation, the WDTRESET should be set to 1.

This sequence is also required to set a new value for
WDTPERIOD. For example, if the watchdog period is
set to 100ms, the following sequence of operations will
reset the watchdog timer:

MOV WDTCFG,#92h
Mov WDTCFG,#93h

www.ramtron.com

page 90 of 114

VRS51L3174

rRAM RSN

12.2.1 Errata: Resetting the Watchdog Timer
when running from an external crystal

There is an issue in the clock setting of the WDT that
prevent the program to reset the WDT properly when
the Clock Divider setting of the Versa Ware JTAG
software Device Option is Set to OFF and the
VRS51L3174 operates from an external crystal or
oscillator.

Whenever the VRS51L2070/3174 is running from an
external crystal or oscillator and the WDT module is to
be used, you must set the Clock Divider setting of the
Device Option in Versa Ware to either Fosc/2, Fosc/4
or Fosc/8.

In order to run the program at “full” speed, add the
instruction: DEVCLKCFG1 &= O0xF0; somewhere at
the beginning of the code to force the system clock
speed back to Fosc/1

This work around is only required for application using
the WDT and running from an external crystal or
oscillator and it does not apply if the internal 40MHz
oscillator is used

12.3 WDT Example Programs

12.3.1 WDT configuration and reset example
when using the internal 40MHz
oscillator

The following demo program shows how to configure
and use the WDT module of the VRS51L3174 when
running from the internal oscillator

Il v

/' V3K_WDT_Demo_Int_40MHzOsc_SDCC.c //
/].

/I DESCRIPTION:

" VRS51L2070/3174 Watchdog timer Demonstration Program

" when using the Internal Oscillator.

I Program operation:

" *This Program Set P1 as Output

" *P1 is set to OxFF for 100ms

I *Initialize the watchdog Timer with a Timeout period of 20ms

" *Clear P1

" *Start a Delay function

" *If the Delay parameter of the Delay function is larger than the

I Timeout period of the watchdog Timer, the WDT will reset the VRS2000
I which will bring back P1 to high level

/I Note/Errata:

" Please refer to the "V2K_WDT_Demo_w_CY_osc_SDCC.c" demo program if you
want

I to use the WDT in a application running from the external crystal
" or an oscillator module.
1/-

#include <VRS51L3174_SDCC.h>

/I --- function prototypes
void delay40(unsigned int);

1 /]

I MAIN FUNCTION

/. /]

void main (void) {

PERIPHEN1 = 0x01;
P1PINCFG = 0x00;

//[Enable Timer 0
//Config port 1 as output
DEVCLKCFG1 &= 0xFO; /IForce Maximum clock speed
//-- Enable the Watchdog Timer

PERIPHEN2 |= 0x04;

P1 = OxFF; /ISet P1 to output OXFF
delay(10); //Keep P1 high for 10ms

1/-- Configure the watchdog Timer
WDTCFG = 0x62; /IConfigure and Reset the Watchdog Timer
WDTCFG = 0x63; /IBit 7:4 = WDTPERIOD : Define the timeout
/Iperiod (~40ms @ 40MHz)
/Bit 3= WTIMEROVF: WDT as Timer
//Overflow Flag
//Bit 2 = ASTIMER: WDT mode
//(0=WDT, 1=Timer)
//Bit1 =WDTOVF :WDT Overflow (Timeout) Flag
/IBit0 =WDTRESET : WDT Reset. To reset WDT
/lthis bit must be cleared, then Set

P1 = 0x00; /IClear P1
do{
delay40(50); //if delay > 40ms then the WDT will reset the processor

/land P1 will return to High

WDTCFG = 0x62;
WDTCFG = 0x63;
Ywhile(1); //Infinite Loop

//IReset the Watchdog Timer

Y/ End of main

/. /]

i INDIVIDUALS FUNCTIONS I
//. //

113
/I;- DELAY40 : 1MS DELAY USING TIMERO
1,
/I; CALIBRATED FOR 40MHZ

vé)id delay40(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

x = PERIPHENT; /ILoad PERIPHEN1 register
x |= 0x01; //[Enable Timer 0
PERIPHEN1 = x;

dlaisloop = dlais;
while (dlaisloop > 0)

THO = 0x63; /[Timer 0 Reload value for 1MS at 40MHZ
TLO = 0xCO;
TOT1CLKCFG = 0x00; /INo prescaler for Timer 0 clock
TOCON = 0x04; //Start TimerQ Count-up
do{
x=TOCON;
x=Xx & 0x80;
Jwhile(x==0);
TOCON = 0x00; //Stop Timer O

dlaisloop = dlaisloop-1;
Ylend of while dlais...

x = PERIPHENT; //Load PERIPHEN1 register
x = x & OXFE; /IDisable Timer 0
PERIPHENT1 = x;

}/End of function delay40

12.3.2 WDT configuration and reset example
when using an external oscillator

The following demo program show the configuration
and use of the WDT module when the VRS51L3174 is
running from an external crystal or an oscillator.

www.ramtron.com

page 91 of 114

VRS51L3174

rRAM RSN

//. //

/I V3K_WDT_Demo_w_ext_osc_SDCC.c //
1/-

l

/| DESCRIPTION:

/I VRS51L2070/3174 Watchdog Timer Demonstration Program when using an
/I the Crystal oscillator or an external oscillator module.

" Errata:

" In order for the WDT to work properly when the VRS51L2070/3174

" operates from an external crystal or oscillator module,

4 the Clock Divider setting in the device Option of the Versa Ware JTAG
I programming interface MUST be configured to either Fosc/2, Fosc/4
" or Fosc/8

"

I In order to run the application at "full speed", the DEVCLKCFG1

I SFR register MUST be manually reconfigured to the Fosc/1

" from within the code.)

/I Program operation:
i

/I *This Program Set P1 as Output

/I *Reconfigure the DEVCLKCFG1 register to Fosc/1

/I (if system must operate at "full" speed)

" *Activate the WDT module

/I *P1is set to OxFF for 10ms (still running from 40MHz)

" *Activate external Crystal oscillator and switch processor operation to it
/I *Initialize the watchdog Timer and configure the Timeout period

" *Clear P1

/I *Start a Delay function

/I *If the Delay parameter of the Delay function is larger than the

I Timeout period of the watchdog Timer, the WDT will reset the processor
/I which will bring back P1 to high level

#include <VRS51L3174_SDCC.h>
/I --- function prototypes

void delay40(unsigned int);
void delay22(unsigned int);
1].

I MAIN FUNCTION

I I

void main (void) {

PERIPHEN1 = 0x01;
P1PINCFG = 0x00;

/[Enable Timer 0
//Config port 1 as output

DEVCLKCFG1 &= 0xFO; /IForce Maximum clock speed (See Errata Note)

/I-- Enable the Watchdog Timer

PERIPHEN2 |= 0x04;

P1 = OxFF; //Set P1 to output OXFF
delay40(10); //Keep P1 high for 10ms

/I--Activate the external crystal oscillator

DEVCLKCFG2 = 0xC4; I/Activate the external crystal oscillator (22.1184MHz)
delay40(1);
DEVCLKCFG1 &= OxBF;
DEVCLKCFG2 &= O0xBF;

//Select the external crystal oscillator
/IDeactivate the internal oscillator

/I-- Configure the watchdog Timer
WDTCFG = 0x62; //Configure timeout period ~72ms (22.1184MHz)
/land Reset the Watchdog Timer

WDTCFG = 0x63; //Bit 7:4 = WDTPERIOD : The timeout period (20ms)

/IBit 3 = WTIMEROVF: WDT as Timer Overflow
Flag

/Bt 2 = ASTIMER : WDT mode (0=WDT,
1=Timer)

//IBit1 =WDTOVF :WDT Overflow (Timeout) Flag
//Bit0 =WDTRESET : WDT Reset. To reset WDT
/lthis bit must be cleared, then Set

P1 = 0x00; /IClear P1

o
delay22(50); /I delay > ~72ms then the WDT will reset
/lthe processor and P1 will return to High

WDTCFG = 0x62;
WDTCFG = 0x63;
while(1); /Nnfinite Loop

//IReset the Watchdog Timer

Y/ End of main

//- //
" INDIVIDUALS FUNCTIONS

1/-
11;
/;- DELAY40 : 1MS DELAY USING TIMERO

/I; CALIBRATED FOR 40MHZ
11,
void delay40(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

x = PERIPHENT; /lLoad PERIPHENT1 register
x |= 0x01; //Enable Timer 0
PERIPHEN1 = x;

dlaisloop = dlais;
while (dlaisloop > 0)

{
THO = 0x63; /[Timer 0 Reload value for 1MS at 40MHZ
TLO = 0xCO;
TOT1CLKCFG = 0x00; /INo prescaler for Timer 0 clock
TOCON = 0x04; /IStart Timer0 Count-up
do{
x=TOCON;
x=x & 0x80;
Jwhile(x==0);
TOCON = 0x00; //Stop Timer O

dlaisloop = dlaisloop-1;
Ylend of while dlais...

x = PERIPHEN1; //Load PERIPHENT1 register
x = x & OXFE; /IDisable Timer 0
PERIPHEN1 = x;

Y/End of function delay40

11

/I;- DELAY22 : 1MS DELAY USING TIMERO
1,

/I; CALIBRATED FOR 22.1184MHZ

void delay22(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

x = PERIPHENT1; /ILoad PERIPHEN1 register
X |= 0x01; //[Enable Timer 0
PERIPHEN1 = x;

dlaisloop = dlais;
while (dlaisloop > 0)

{
THO = OxAS9; /ITIMERO RELOAD VALUE FOR 1MS AT 22.1184MHZ
TLO = Ox9A;
TOT1CLKCFG = 0x00; /INo prescaler for Timer 0 clock
TOCON = 0x04; //Start TimerQ Count-up
do{
x=TOCON;
x= X & 0x80;
Jwhile(x==0);
TOCON = 0x00; //Stop Timer O

dlaisloop = dlaisloop-1;
Ylend of while dlais...

x = PERIPHENT; //Load PERIPHEN1 register
x = x & OXFE; /IDisable Timer 0
PERIPHENT1 = x;

YIEnd of function delay22

www.ramtron.com

page 92 of 114

VRS51L3174

rRAM RSN

12.4 Using the Watchdog as a Timer

The VRS51L3174 watchdog timer can also be used as
a timer. In this case, the timeout period is defined by
the watchdog timer period value. Due to the presence
of the 14-bit prescaler, long timeout periods can be
achieved.

Configuring the watchdog timer operation as a general
purpose timer is achieved by:

o Setting the ASTIMER bit of the WDTCFG
register to 1

o Selecting the timer maximum time value of
WDTPeriod

o Performing a watchdog timer reset sequence
to clear the timer and apply the timer
configuration

The WTIMERFLAG bit of the WDTCFG register is
used to monitor the timer overflow. When configured in
timer mode, the watchdog timer does not reset the
VRS51L3174 and cannot trigger an interrupt.

12.5 Watchdog Timer Example Programs

12.5.1 Initialization and Reset of the Watchdog
Timer

//. /]

/I VRS51L3174-WDT_Demo_SDCC.c //
/I //
/I DESCRIPTION: VRS51L3174 Watchdog Timer Demonstration Program

*This Program Set P1 as output

" *P1 is set to OxFF for 100ms

1 *Initialize the watchdog timer with a timeout period of 20ms

" *Clear P1

" *Start a delay function

I *If the Delay parameter of the delay function is larger than the

1 Timeout period of the watchdog timer, the WDT will reset the VRS51L3174
" which will bring back P1 to high level

/- Il
#include <VRS51L3174_SDCC.h>

/I - function prototypes
void delay(unsigned int);

Il v

" MAIN FUNCTION "
/].

void main (void) {

PERIPHEN1 = 0x01;
PERIPHEN2 = 0x08;

//[Enable Timer 0

//[Enable IOPORT
P1PINCFG = 0x00; /IConfig port 1 as output
/- Enable the Watchdog Timer

PERIPHEN?2 |= 0x04;

P1 = OxFF; //Set P1 to output OxFF

delay(100); //Keep P1 high for 100ms

/- Configure the watchdog timer

WDTCFG = 0x62;
WDTCFG = 0x63;

/IConfigure and Reset the Watchdog Timer

/IBit 7:4 = WDTPERIOD : Define the timeout period (20ms)
//Bit3 =WTIMEROVF : WDT as timer overflow flag
/Bit2 =ASTIMER :WDT mode (0=WDT, 1=Timer)
/IBit1 =WDTOVF :WDT overflow (Timeout) Flag
//Bit0 =WDTRESET : WDT reset. To reset WDT
/lthis bit must be cleared, then set

P1 = 0x00; /IClear P1
do{
delay(10); /If delay > 20ms then the WDT will reset the VRS51L3174

/land P1 will return to high
WDTCFG = 0x62; //IReset the watchdog timer
WDTCFG = 0x63;
while(1); //Loop Forever

Y/ End of main

//

//;- DELAY1MSTO : 1MS DELAY USING TIMERO
1,

/I; CALIBRATED FOR 40MHZ

13

vé)id delay(unsigned int dlais){

idata unsigned char x=0;
idata unsigned int dlaisloop;

x = PERIPHEN1; /ILOAD PERIPHEN1 REG
x |= 0x01; //[ENABLE TIMER 0
PERIPHEN1 = x;

dlaisloop = dlais;
while (dlaisloop > 0)

THO = 0x63; /ITIMERO RELOAD VALUE FOR 1MS AT 40MHZ
TLO = 0xCO;

TOT1CLKCFG = 0x00; /INO PRESCALER FOR TIMER 0 CLOCK

TOCON = 0x04; /ISTART TIMER 0, COUNT UP
do{
x=TOCON;
x= X & 0x80;
Jwhile(x==0);
TOCON = 0x00; /IStop Timer O

dlaisloop = dlaisloop-1;
}Ylend of while dlais...

x = PERIPHEN1; //ILOAD PERIPHEN1 REG
x = x & OXFE; /IDISABLEBLE TIMER 0
PERIPHEN1 = x;

Y/End of function delais

www.ramtron.com

page 93 of 114

VRS51L3174

rRAM RSN

13 VRS51L3174 Interrupts

The VRS51L3174 has a comprehensive set of 49
interrupt sources and uses 16 interrupt vectors to
handle them. The interrupts are categorized in two
distinct groups:

e Module interrupt
e Pin change interrupts

The module interrupts include interrupts that are
generated by VRS51L3174 peripherals such as the
UARTs, SPI, I)C , PWC and port change monitoring
modules.

As their name implies, the pin change interrupts are
interrupts that are generated by predefined conditions
at the physical pin level: . The pin change interrupts
can be caused by a level or an edge (rising or falling)
on a given pin. Standard 8051 INTO and INT1
interrupts are considered pin change interrupts. The

VRS51L3174 includes INTO and INT1, as well as 14
other pin interrupts distributed on ports 0 and 3.

The interrupt sources share 16 interrupt vectors from
00h to 7Bh. Each interrupt vector can be configured to
respond to either a pin change interrupt or a module
interrupt. The two following diagrams provide an
overview of the VRS51L3174 modules/pin interrupt
structure, the associated SFR registers and the
interaction among the interrupt management SFRs.

FIGURE 42: INTERRUPT SOURCES DETAILED VIEW

Module

0
. To Interrupt

Controller
1
INTENX.y bit

INTSRCx.y bit

INTPINFx.y bit

INTPININVx.y bit

www.ramtron.com

page 94 of 114

VRS51L3174

rRAM RSN

FIGURE 43: INTERRUPT SOURCES OVERVIEW

SPI TX Empty —{°

Source config
Not Used —0

P3.2 - INTO pin

P3.6 pin -1
Timer 1 —°
P3.7 pin -1

Timer 2 —°
P0.0 pin -1
12C —°
P0.1 pin -1
UART Collision 1o
12C M Lost arbitration
P0.2 pin -1
PWC Modules —0
P0.3 pin -1
PWM3:0 Timer—0
P0.4 pin -1t
PWM?7:4 Timer—0
P0.5 pin -1
WDT Timer/ _|
Arithmetic Unit
P0.6 pin -1
Port Chg 1 —°
P0.7 pin -1

Interrupt

YYYYYYYYYYYYYYYY

Interrupt
Vector
Interrupt l Natural
Number Priority

¥
Int0 | 0003h 1
Int1 | 000Bh 2
Int2 | 0013h 3
Int3 | 001Bh 4
Int4 | 0023h 5
Int5 | 002Bh 6
Int6 | 0033h 7
Int7 | 003Bh 8
Int 8 | 0043h 9
Int9 | 004Bh| 10
Int 10| 0053h 1
Int11] 005Bh| 12
Int 12| 0063h 13
Int 13| 006Bh| 14
Int 14| 0073h 15
Int 15| 007Bh| 16

Details of Module / Pin controller

Module

0

www.ramtron.com

page 95 of 114

VRS51L3174

rRAM RSN

The interaction between the interrupt management configuration registers is summarized in the following table. The
paragraphs below describe each one of these registers in detail.

TABLE 150:VRS51L3174 INTERRUPT CONFIGURATION SUMMARY

Int # Priority Interrupt Interrupt Interrupt Interrupt Connected Modules Connected | Pin Pin Pin Interrupt
Vector Enable Priority Source Pin Inversion Sensitivity Flag
INT O 1 0003h INTEN1.0 | INTPRI1.0 INTSRC1.0 None P3.2-INTO IPINTINV1.0 | IPINSENS1.0 | IPINFLAG1.0
Int 1 2 000Bh INTEN1.1 | INTPRI1.1 INTSRC1.1 SPI TX Empty P3.3-INT1 IPINTINV1.1 IPINSENS1.1 IPINFLAG1.1
Int 2 3 0013h INTEN1.2 | INTPRI1.2 INTSRC1.2 SPI RX Available P3.0 IPINTINV1.2 | IPINSENS1.2 | IPINFLAG1.2
SPI RX Overrun
Int3 4 001Bh INTEN1.3 | INTPRI1.3 INTSRC1.3 Timer 0 P3.1 IPINTINV1.3 | IPINSENS1.3 | IPINFLAG1.3
Int 4 5 0023h INTEN1.4 | INTPRI1.4 INTSRC1.4 Port Change 0 P3.4 IPINTINV1.4 | IPINSENS1.4 | IPINFLAG1.4
Int5 6 002Bh INTEN1.5 | INTPRI1.5 INTSRC1.5 UARTO Tx Empty P3.5 IPINTINV1.5 | IPINSENS1.5 | IPINFLAG1.5
UARTO RX Available
UARTO RX Overrun
UARTO Timer OV
Int 6 7 0033h INTEN1.6 | INTPRI1.6 INTSRC1.6 UART1 Tx Empty P3.6 IPINTINV1.6 | IPINSENS1.6 | IPINFLAG1.6
UART1 RX Available
UART1 RX Overrun
UART1 Timer OV
Int7 8 003Bh INTEN1.7 | INTPRI1.7 INTSRC1.7 Timer 1 P3.7 IPINTINV1.7 | IPINSENS1.7 | IPINFLAG1.7
Int8 9 0043h INTEN2.0 | INTPRI2.0 INTSRC2.0 Timer 2 P0.0 IPINTINV2.0 | IPINSENS2.0 | IPINFLAG2.0
Int9 10 004Bh INTEN2.1 | INTPRI2.1 INTSRC2.1 12C Tx Empty PO.1 IPINTINV2.1 IPINSENS2.1 IPINFLAG2.1
12°C RX Available
12)C RX Overrun
Int 10 11 0053h INTEN2.2 | INTPRI2.2 INTSRC2.2 UARTO Collision P0.2 IPINTINV2.2 | IPINSENS2.2 | IPINFLAG2.2
UART1 Collision
I2)C Master Lost
Arbitration
Int 11 12 005Bh INTEN2.3 | INTPRI2.3 INTSRC2.3 PWC 0 End Condition P0.3 IPINTINV2.3 | IPINSENS2.3 | IPINFLAG2.3
PWC 1 End Condition
Int 12 13 0063h INTEN2.4 | INTPRI2.4 INTSRC2.4 PWM3 as Timer OV P0.4 IPINTINV2.4 | IPINSENS2.4 | IPINFLAG2.4
PWM2 as Timer OV
PWM1 as Timer OV
PWMO as Timer OV
Int 13 14 006Bh INTEN2.5 | INTPRI2.5 INTSRC2.5 PWM7as Timer OV P0.5 IPINTINV2.5 | IPINSENS2.5 | IPINFLAG2.5
PWM6as Timer OV
PWM5as Timer OV
PWM4as Timer OV
Int 14 15 0073h INTEN2.6 | INTPRI2.6 INTSRC2.6 Watchdog as Timer P0.6 IPINTINV2.6 | IPINSENS2.6 | IPINFLAG2.6
ov
Arithmetic Unit OV
Int 15 16 007Bh INTEN2.7 | INTPRI2.7 INTSRC2.7 Port Change 1 PO.7 IPINTINV2.7 | IPINSENS2.7 | IPINFLAG2.7

www.ramtron.com

page 96 of 114

VRS51L3174

rRAM RSN

13.1 Interrupt Enable Registers

The interrupt enable and the general interrupt enable
registers establish the link between the peripheral
module/pin interrupt signals and the processor
interrupt system.

The GENINTEN register controls activation of the
global interrupt. On the VRS51L3174, only the least
significant bit of the GENINTEN is used. The
GENINTEN register is similar to the standard 8051 EA
bit. When the GENINTEN bit is set to 1, all the enabled
interrupts emanating from the modules/pins will reach
the interrupt controller.

TABLE 151:GENINTEN SFR REGISTER - NAME SFR E8H

When a given interrupt bit is set to 1, the
corresponding interrupt path is activated.

TABLE 152: INT ENABLE 1 REGISTER - INTEN1 (MobuLEs /PIN/INT VECTOR) SFR 88H

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 T1IEN Timer 1 Interrupt Enable
P3.7 pin P3.7 pin if interrupt source is set to pin
Int7 Interrupt vector 7 at address 003Bh
6 U1IEN UART1 Interrupt Enable

o UART1 Tx Empty

o UART1 Rx Available

o UART1 Rx Overrun

o UART1 Baud Rate Generator as
Timer Overflow

7 6 5 4 3 2 1 0
- - - - - B - RW
0
Bit Mnemonic Description
7:2 Unused
1 CLRPININT It is recommended to set this bit to 1 before

enabling a pin interrupt to avoid receiving an
interrupt right after GENINTEN bit is set

0 GENINTEN General Interrupt Enable
0 = All enabled interrupts are masked
(deactivated)

1 = All enabled interrupt can raise an interrupt

P3.6 pin P3.6 pin if interrupt source is set to pin
Int 6 Interrupt vector 6 at address 0033h
5 UOIEN UARTO Interrupt Enable

o UARTO Tx Empty

o UARTO Rx Available

o UARTO Rx Overrun

o UARTO Baud Rate Generator as
Timer Overflow

P3.5 pin P3.5 pin if interrupt source set to pin
Int5 Interrupt vector 5 at address 0002Bh

4 PCHGIENO Port Change Interrupt Module 0 Enable
P3.4 pin P3.4 pin if interrupt source is set to pin
Int 4 Interrupt vector 4 at address 0023h

3 TOIEN Timer O Interrupt Enable
P3.3 pin P3.3 pin if interrupt source is set to pin
Int 3 Interrupt vector 3 at address 001Bh

2 SPIRXOVIEN SPI Interrupt Enable

SPI Rx Available
SPI Rx Overrun

P3.0 P3.0 pin if interrupt source is set to pin
Int 2 Interrupt vector 2 at address 0013h

1 SPITXEIEN SPI Tx Empty Interrupt Enable
P3.3 pin P3.3 pin if interrupt source is set to pin
Int 1 Interrupt vector 0 at address 000Bh

0 No Module Unused
P3.2 pin P3.2 pin if interrupt source is set to pin
Int 0 Interrupt vector 0 at address 0003h

www.ramtron.com

page 97 of 114

VRS51L3174

rRAM RSN

TABLE 153: INT ENABLE 2 REGISTER INTEN2 (MobuLEs /PIN/INT VECTOR) SFR A8H
7 6 5 4 3 2 1 0
R/W R/W RW RW RW RW R/W RW
0 0 0 0 0 0 0 0

Bit Mnemonic Description
7 PCHGIEN1 Port Change Interrupt Module 1 Enable
P0.7 pin PO0.7 pin if interrupt source is set to pin
Int 15 Interrupt vector 15 at address 007Bh
6 AUWDTIEN Watchdog Timer and Arithmetic Unit Interrupt
Enable
o Watchdog as Timer Overflow
o Arithmetic Unit 32-bit Overflow
P0.6 pin P0.6 pin if interrupt source is set to pin
Int14 Interrupt vector 14 at address 0073h
5 PWMT74IEN PWM as Timer 7 to 4 Overflow Interrupt Enable
o PWM as Timer Module 7 Overflow
o PWM as Timer Module 6 Overflow
o PWM as Timer Module 5 Overflow
o PWM as Timer Module 4 Overflow
P0.5 pin P0.5 pin if interrupt source set to pin
Int 13 Interrupt vector 13 at address 006Bh
4 PWMT30IEN PWM as Timer 3 to 0 Overflow Interrupt Enable
o PWM as Timer Module 3 Overflow
o PWM as Timer Module 2 Overflow
o PWM as Timer Module 1 Overflow
o PWM as Timer Module 0 Overflow
P0.4 pin P0.4 pin if interrupt source is set to pin
Int 12 Interrupt vector 12 at address 0063h
3 PWCIEN Pulse Width Counter Interrupt Enable
o PWCO END condition occurred
o PWC1 END condition occurred
P0.3 pin P0.3 pin if interrupt source set to pin
Int 11 Interrupt vector 11 at address 005Bh
2 12CUCOLIEN I12)C and UARTS Interrupts Enable
o I)C Master Lost Arbitration
o UARTO Collision Interrupt
o UART1 Collision Interrupt
P0.2 pin P0.2 pin if interrupt source is set to pin
Int 10 Interrupt vector 10 at address 0053h
1 12CIEN I2C Interrupts Enable
o TX Empty
o RX Available
o RX Overrun
P0.1 pin PO.1 pin if interrupt source set to pin
Int9 Interrupt vector 9 at address 004Bh
0 T2IEN Timer 2 Interrupt Enable (INTSCR
P0.0 pin P0.0 pin if interrupt source is set to pin
Int 8 Interrupt vector 8 at address 0043h

13.2 Interrupt Source

Each one of the

16 interrupt vectors on the
VRS51L3174 can be configured to function as either a
peripheral module or a pin change interrupt. The
selection of the interrupt source is handled by the
INTSRC1 and the INTSRC2 registers.

By default, the interrupt source is set to peripheral
module. However, setting the INTSRC bit to 1 will
“associate” the corresponding interrupt vector to the
corresponding pin interrupt.

When a given interrupt vector is associated with a
module, the corresponding bit of the IPINSENSx must
be set to 0, so it is level sensitive (reset value).

TABLE 154:INTERRUPT SOURCE 1 REGISTER - INTSRC1 SFR E4H

7 6 5 4 3 2 1 0
RW RW RW RW RW RW R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 INTSRC1.7 Interrupt 7 Source
0 = Timer 1
1=P3.7
6 INTSRC1.6 Interrupt 6 Source
0 = UART1
1=P3.6
5 INTSRC1.5 Interrupt 5 Source
0 = UARTO
1=P3.5
4 INTSRC1.4 Interrupt 4 Source
0 = Port Change 0
1=P34
3 INTSRC1.3 Interrupt 3 Source
0 =Timer 0
1=P3.1
2 INTSRC1.2 Interrupt 2 Source
0 = SPI RXAV, SPI RXOV
1=P3.0
1 INTSRC1.1 Interrupt 1 Source
0 = SPI Tx EMPTY
1=1INT1 (P3.3)
0 INTSRC1.0 Interrupt 0 Source
1 =INTO (P3.2)

www.ramtron.com

page 98 of 114

VRS51L3174

rRAM RSN

TABLE 155:INTERRUPT SOURCE 2 REGISTER - INTSRC2 SFR E5H

TABLE 156:INTERRUPT PRIORITY 1 REGISTER - INTPRI1 SFR E2H

7

6 5

4 3 2 1 0

R/W

R/W R/W

R/W R/W R/W R/W R/W

0

0 0

0 0 0 0 0

Bit

Mnemonic

Description

T1P37PRI

Interrupt 7 Priority Level (Timer 1/ P3.7)
0 = Normal Priority
1 = High Priority

U1P36PRI

Interrupt 6 Priority Level (UART1 / P3.6)
0 = Normal Priority
1 = High Priority

UOP35PRI

Interrupt 5 Priority Level (UARTO / P3.5)
0 = Normal Priority
1 = High Priority

PCOP34PRI

Interrupt 4 Priority Level (Port Chg 0/ P3.4)
0 = Normal Priority
1 = High Priority

TOP31PRI

Interrupt 3 Priority Level (Timer 0/ P3.1)
0 = Normal Priority
1 = High Priority

SRP30PRI

Interrupt 2 Priority Level (SPI RX / P3.0)
0 = Normal Priority
1 = High Priority

7 6 5 4 3 2 1 0
R/W R/W R/W R/W R/W R/W RW R/W
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 INTSRC2.7 Interrupt 15 Source
0 = Port Change 1
1=P0.7
6 INTSRC2.6 Interrupt 14
0 = WDT Timer OV, AU OV
1=P0.6
5 INTSRC2.5 Interrupt 13 Source
0 = PWM7:4 Timer
1=P0.5
4 INTSRC2.4 Interrupt 12 Source
0 = PWM3:0 Timer OV
1=P04
3 INTSRC2.3 Interrupt 11 Source
0 =PWCO, PWC1
1=P0.3
2 INTSRC2.2 Interrupt 10 Source
0 = UARTSs Coll, I>C Lost Arbitration
1=P0.2
1 INTSRC2.1 Interrupt 9 Source
0=1C
1=P0.1
0 INTSRC2.0 Interrupt 8 Source
0 = Timer
1=P0.0

STP33PRI

Interrupt 1 Priority Level (SPI TX / P3.3)
0 = Normal Priority
1 = High Priority

13.3 Interrupt Priority

The INTPRIx registers enable the user to modify the
interrupt priority of either the module or the pin
interrupts. When the INTPRIx is set to 0, the natural
priority of module/pin interrupts prevails. Setting the
INTPRIx register bit to 1 will set the corresponding
module/pin priority to high.

If more than two module/pin interrupts are
simultaneously set to high priority, the natural priority
order will apply: Priority will be give to the module/pin
interrupts with high priority, over normal priority.

INTOP32PRI

Interrupt O Priority Level (INTO / P3.2)
0 = Normal Priority
1 = High Priority

TABLE 157

:!INTERRUPT PRIORITY 2 REGISTER - INTPRI2 SFR E3H

7

6 5

4 3 2 1 0

RW

RW RW

RW RW RW RW RW

0

0 0

0 0 0 0 0

Bit

Mnemonic

Description

PC1PO7PRI

Interrupt 15 Priority Level (Port Chg 1/ P0.0)
0 = Normal Priority
1 = High Priority

AIPOGPRI

Interrupt 14 Priority Level (WDT, AU / P0.6)
0 = Normal Priority
1 = High Priority

PWHPO5PRI

Interrupt 13 Priority Level (PWM7:4 timer / P0.5)
0 = Normal Priority
1 = High Priority

PWLPO4PRI

Interrupt 12 Priority Level (PWM3:0 timer / P0.4)
0 = Normal Priority
1 = High Priority

PWCPO2PRI

Interrupt 11 Priority Level (PWCO0, PWC1 / P0.3)
0 = Normal Priority
1 = High Priority

INT10PO1PRI

Interrupt 10 Priority Level

(UARTSs Coll, I>)C Lost Arbitration / P0.2)
0 = Normal Priority

1 = High Priority

12CPO1PRI

Interrupt 9 Priority Level (12)C / P0.1)
0 = Normal Priority
1 = High Priority

T2POOPRI

Interrupt 8 Priority Level (Timer 2/ P0.0)
0 = Normal Priority
1 = High Priority

www.ramtron.com

page 99 of 114

VRS51L3174

rRAM RSN

13.4 Pin Inversion Setting

TABLE 158: IMPACT OF PIN INVERSION SETTING ON PIN INTERRUPT SENSITIVITY

Pin Inversion

Interrupt Condition

0

Normal Interrupt Polarity Sensitivity

1

Inverted Interrupt Polarity Sensitivity

TABLE 159:INTERRUPT PIN INVERSION 1 REGISTER - IPININV1 SFR D6H

13.5 Pin Interrupt Sensitivity Setting

The pin interrupt can be configured as level sensitive
or edge triggered. The pin interrupt sensitivity is set via
the IPINSENSx and IPININVXx registers. The following
table summarizes the pin interrupt trigger condition
settings for IPINSENXx and IPININVXx.

TABLE 161:IMPACT OF PIN SENSITIVITY AND PIN INVERSION SETTING ON PIN INTERRUPT

Pin Sensitivity Pin Inversion Interrupt Condition
0 0 High level on pin
0 1 Low level on pin
1 0 Rising edge on pin
1 1 Falling edge on pin

0="P0.0
1 =P0.0 Inverted

7 6 5 4 3 2 1 0
RW RW RW RW RW RW R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 P371INV Interrupt 7 Pin Polarity
0=P3.7
1 =P3.7 Inverted
6 P361INV Interrupt 6 Pin Polarity
0=P3.6
1 =P3.6 Inverted
5 P35IINV Interrupt 5 Pin Polarity
0=P35
1 =P3.5 Inverted
4 P341INV Interrupt 4 Pin Polarity
0=P34
1 =P3.4 Inverted
3 P311INV Interrupt 3 Pin Polarity
0=P3.1
1=P3.1 Inverted
2 P30IINV Interrupt 2 Pin Polarity
0=P3.0
1 =P3.0 Inverted
1 INT1IINV Interrupt 1 Pin Polarity
0 =INT1 (P3.3)
1=INT1 (P3.3) Inverted
0 INTOIINV Interrupt O Pin Polarity
0 =INTO (P3.2)
1 =INTO (P3.2) Inverted
TABLE 160: INTERRUPT PIN INVERSION 2 REGISTER - IPININV2 SFR D7H
7 6 5 4 3 2 1 0
R/W R/W RW RW RW RW R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
7 PO7IINV Interrupt 15 Pin Polarity
0=P0.7
1=PO0.7 Inverted
6 PO6GIINV Interrupt 14 Pin Polarity
0="P0.6
1 =PO0.6 Inverted
5 PO5IINV Interrupt 13 Pin Polarity
0=P0.5
1= P0.5 Inverted
4 PO4IINV Interrupt 12 Pin Polarity
0=P0.4
1=P0.4 Inverted
3 PO3IINV Interrupt 11 Pin Polarity
0=P0.3
1 =P0.3 Inverted
2 PO2IINV Interrupt 10 Pin Polarity
0=P0.2
1=P0.2 Inverted
1 PO1IINV Interrupt 9 Pin Polarity
0=P0.1
1=PO0.1 Inverted
0 POOIINV Interrupt 8 Pin Polarity

The following tables provide the bit definitions for the
IPINSENS1 and IPINSENS2 registers. It is assumed
that the corresponding IPININVXx bit is set to 0. If the
corresponding IPININVx bit is set to 1, the
corresponding interrupt event will be inverted.

TABLE 162:INTERRUPT PIN SENSITIVITY 1 REGISTER - IPINSENS1 SFR E6H

7 6 5 4 3 2 1 0
RIW RIW RIW RIW RIW RIW RIW RIW

0 0 0 0 0 0 0 0

Bit Mnemonic Description

7 P37ISENS Interrupt 7 Pin Sensitivity (IPININV1.7 = 0)
0 = P3.7 High Level

1 =P3.7 Rising Edge

6 P36ISENS Interrupt 6 Pin Sensitivity (IPININV1.6 = 0)
0 = P3.6 High Level

1 = P3.6 Rising Edge

5 P35ISENS Interrupt 5 Pin Sensitivity (IPININV1.5 = 0)
0 = P3.5 High Level

1 = P3.5 Rising Edge

4 P34ISENS Interrupt 4 Pin Sensitivity (IPININV1.4 = 0)
0 = P3.4 High Level

1 =P3.4 Rising Edge

3 P31ISENS Interrupt 3 Pin Sensitivity (IPININV1.3 = 0)
0 = P3.1 High Level

1 =P3.1 Rising Edge

2 P30ISENS Interrupt 2 Pin Sensitivity (IPININV1.2 = 0)
0 = P3.0 High Level

1 = P3.0 Rising Edge

1 INT1ISENS Interrupt 1 Pin Sensitivity (IPININV1.1 = 0)
0 =INT1 (P3.3) High Level

1= INT1 (P3.3) Rising Edge

0 INTOISENS Interrupt 0 Pin Sensitivity (IPININV1.0 = 0)
0 = INTO (P3.2) High Level

1 = INTO (P3.2) Rising Edge

www.ramtron.com

page 100 of 114

VRS51L3174

rRAM RSN

TABLE 163:INTERRUPT PIN SENSITIVITY 2 REGISTER - IPINSENS2 SFR E7H

TABLE 164:INTERRUPT PIN FLAG 1 REGISTER - IPINFLAG1 SFR B8H

7 6 5 4 3 2 1 0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Bit Mnemonic Description

7 PO7ISENS Interrupt 7 Pin Sensitivity (IPININV2.7 = 0)
0 = P0.7 High Level

1 =P0.7 Rising Edge

6 POB6ISENS Interrupt 6 Pin Sensitivity (IPININV2.6 = 0)
0 = P0.6 High Level

1 = P0.6 Rising Edge

5 PO5ISENS Interrupt 5 Pin Sensitivity (IPININV2.5 = 0)
0 = P0.5 High Level

1 = P0.5 Rising Edge

4 PO4ISENS Interrupt 4 Pin Sensitivity (IPININV2.4 = 0)
0 = P0.4 High Level

1 =P0.4 Rising Edge

3 PO3ISENS Interrupt 3 Pin Sensitivity (IPININV2.3 = 0)
0 = P0.3 High Level

1 = P0.3 Rising Edge

2 PO2ISENS Interrupt 2 pin Sensitivity (IPININV2.2 = 0)
0 = P0.2 High Level

1 =P0.2 Rising Edge

1 PO1ISENS Interrupt 1 Pin Sensitivity (IPININV2.1 = 0)
0 = P0.1 High Level

1 =P0.1 Rising Edge

0 POOISENS Interrupt 0 Pin Sensitivity (IPININV2.0 = 0)
0 = P0.0 High Level

1 =P0.0 Rising Edge

13.6 Interrupt Pin Flags

For each pin interrupt there is an interrupt flag that can
be monitored. When the selected interrupt event is
detected on a given pin, the corresponding pin
interrupt flag is set to 1 by the system.

The interrupt pin flags should be cleared before any
pin interrupt is activated.

The pin interrupt Flag are not automatically cleared by
the interrupt service routine RETI instruction. For this
reason they must be cleared by the software before
exiting the interrupt service routine.

The pin interrupt flags can be monitored via the
software, even if the corresponding pin interrupt is not
activated. If all the corresponding interrupts are routed
to modules and all the interrupts are disabled, the
IPINFLAGX registers can be used as general purpose
scratchpad registers. However this is not
recommended.

7 6 5 4 3 2 1
RW RW R/W R/W R/W R/W RW R/W
0 0 0 0 0 0 0
Bit Mnemonic Description
7 P37IF Interrupt 7 Pin Flag
Set to 1if P3.7 pin Interrupt occurs
6 P36IF Interrupt 6 Pin Flag
Set to 1 if P3.6 pin Interrupt occurs
5 P35IF Interrupt 5 Pin Flag
Set to 1if P3.5 pin Interrupt occurs
4 P34IF Interrupt 4 Pin Flag
Set to 1if P3.4 pin Interrupt occurs
3 P31IF Interrupt 3 Pin Flag
Set to 1if P3.1 pin Interrupt occurs
2 P30IF Interrupt 2 Pin Flag
Set to 1 if P3.0 pin Interrupt occurs
1 INTOIF Interrupt 1 Pin Flag
Setto 1if INT1 (P3.3) pin Interrupt occurs
0 INT1IF Interrupt 0 Pin Flag
Set to 1if INTO (P3.2) pin Interrupt occurs
TABLE 165:INTERRUPT PIN FLAG 2 REGISTER - IPINFLAG2 SFR D8H
7 6 5 4 3 2 1
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0
Bit Mnemonic Description
7 PO7IF Interrupt 15 Pin Flag
Set to 1if P0.7 pin Interrupt occurs
6 PO6IF Interrupt 14 Pin Flag
Set to 1 if P0.6 pin Interrupt occurs
5 PO5IF Interrupt 13 Pin Flag
Set to 1 if P0.5 pin Interrupt occurs
4 PO4IF Interrupt 12 Pin Flag
Set to 1if P0.4 pin Interrupt occurs
3 PO3IF Interrupt 11 Pin Flag
Set to 1if P0.3 pin Interrupt occurs
2 PO2IF Interrupt 10 Pin Flag
Set to 1if P0.2 pin Interrupt occurs
1 PO1IF Interrupt 9 Pin Flag
Set to 1if P0.1 pin Interrupt occurs
0 POOIF Interrupt 8 Pin Flag

Set to 1 if P0.0 pin Interrupt occurs

www.ramtron.com

page 101 of 114

VRS51L3174

rRAM RSN

14 VRS51L3174 JTAG Interface

The VRS51L3174 includes a JTAG interface that
enables programming of the onboard Flash as well as
code debugging. To free up as many I/Os as possible,
the JTAG interface pins are shared with regular 1/O
pins that can be used as general purpose 1/Os when
the JTAG interface is not being used.

The JTAG interface is mapped into the following pins:

TABLE 166: JTAG INTERFACE PIN MAPPING

JTAG Function Corresponding Pin
Pin

TDI JTAG Data Input P4.3

TDO JTAG Data Output P4.2

CMO Chip Mode 0 ALE

TMS Test Mode Select P4.1

TCK JTAG Clock P2.7

Activation of the JTAG interface is controlled by the
CMO-ALE pin. The CMO-ALE pin includes an internal
pull-up resistor and its state is sampled when a power-
on reset occurs.

Forcing the CMO-ALE pin to 0 (logic low) during the
power-on reset will activate the JTAG interface and put
the VRS51L3174 into JTAG mode.

When the VRS51L3174 is in JTAG mode, the code will
not execute after a power-on reset or a regular reset:
To start the code, a “program run” command must be
sent through the JTAG interface. This is handled by
the Versa Ware JTAG software developed by Ramtron
and available for download on the Web site at
www.ramtron.com/doc/Products/Microcontroller/Suppo
rt Tools.asp. This software provides an easy-to-use
interface for device programming and in-circuit
debugging. For more information on the VRS51L3174
debugger’s features and use, please consult the Versa
Ware JTAG user guide.

14.1 Impact of JTAG interface activation

When the JTAG interface is activated, it has the
following consequences on the VRS51L3174’s
operation:

e The PWM 7 output is deactivated. The PWM7
module can still be activated and used as a
general purpose timer.

e The P2.7, P4.3, P4.2, P4.1 I/O pins become
dedicated to the JTAG interface.

e To debug code accessing devices connected
to the external data memory bus, a 1K Ohms

resistor should be placed in the path of CMO-
ALE to the Versa-JTAG interface module.

14.2 Board Level JTAG Interface
Implementation

To perform in-circuit programming and debugging of

the VRS51L3174, access to the device’s JTAG port

should be provided at the board level. The following

figure demonstrates a typical setup for JTAG port
access.

FIGURE 44: JTAG INTERFACE SETUP

=
P2.7 - TCK
¥o0 VRS51L3074 | P
Z| P42-TDO
> 5
2 P4.1-TMS
H RESET CMO - ALE
VDD
O @pine
-4 CMO:ALE
@
@

Vin vobo 0 [NT] 0 o

} % e Exirer Do emony s

3.3V Regulator
_ lEnable IDC Connector

The configuration of the IDC connector shown in
Figure 35 matches that on the Versa-JTAG interface
IDC connector.

Please note that if the target PCB’s regulator includes
a power control feature, the power control line can be
routed to the JTAG IDC connector, enabling the
Versa-JTAG to control the target board’s power during
device programming and in-circuit debugging. The
other option is to leave the PWRCTRL pin of the IDC
connector unconnected.

For the RESET control line, the presence of an
external RC reset circuit is optional.

www.ramtron.com

page 102 of 114

VRS51L3174

rRAM RSN

14.3 VRS51L3174 Debugger

The VRS51L3174 includes advanced debugging
features that enable real-time, in-circuit debugging and
emulation via the JTAG interface. When the
VRS51L3174 debugger is activated, the upper 1024
bytes of the Flash memory are not available for user
program.

The VRS51L3174 debugger is intended to be used in
conjunction with the Versa Ware JTAG software.

15 Flash Programming
Interface (FPI)

The FPI module allows the processor to perform in-
application management of the Flash memory content.
The following operations are supported by the FPI
module :

Mass Erase
Page Erase
Byte Write
Byte Read

Six SFR registers are associated with the FPI module
operation, as shown in the table below:

TABLE 167: FLASH PROGRAMMING INTERFACE REGISTERS

TABLE 168: FPI CONFIGURATION REGISTER - FPICONFIG SFR E9H

7

6 5

4 3 2 1 0

R

R R

R R/W R/W R/W R/W

0

0 1

1 0 1 0 0

Mnemonic

Description

Bit
7:6

FPILOCK[1:0]

These bits indicate the stage of the unlock
operation:

00 : IAP protection on (no unlock steps done)
01 : IAP first unlock step done: FPI_DATA_LO
received OxAA

10 : IAP protection off: second step done
(FPI_DATA_LO received 0x55)

11 : Disables write/erase operations until the
next system reset. This occurs if a wrong
sequence is used.

Reserved

Reads as 1

FPIRDY

Indicates that the FPI is idle in all modes except
"write byte" mode, in which the double buffer is
ready for a new value

RESERVED

Keep this bit at 0

FPISBIT

0 = FPI operates in 16-bit mode
1 = FPI operates in 8-bit mode

[1:0]

FPITASK[1:0]

Operation:

00: Read Mode

01: Mass Erase

10: Page Erase

11: Write (Writing to FPIDATAL will starts the
Write operation)

Note that actions are only started if FPIRDY is
high, otherwise the action is cancelled

15.2 FPI Flash Address and Data

Registers

The FPIADDRH and FPIADDRL registers are used to

SFR Name Function Reset Value specify the address where the IAP function will be
Configures the performed_
E9h FPICONFIG FPI operations 34h
Address for TABLE 169: FPI AbbRress Hich FPIADDRH SFR EBH
operation 7] 6] 5 41 3] 2 [T 11 o
EAh FPIADDRL (lower byte) 00h R/W, Reset = 0x00
Address for FPIADDR[15:8]
operation
EBh FPIADDRH (upper byte) 00h
ECh FPIDATAL Data to write 00h
Upper byte of
EDh FPIDATAH data to write 00h
Clock speed
during FPI
EEh FPICLKSPD operations 00h

The FPI module is activated by setting bit 0 of the
PERIPHEN2 register. There are two ways to perform
read and write operations to the Flash using the FPI
module - standard 8-bit mode, which writes 1 byte at a
time, and an extended 16-bit mode, which writes 2
bytes at a time (one word), effectively doubling the
writing speed. In addition, whenever a write or read is
performed, the address is incremented automatically
by the FPI module, saving processor cycles and code
space.

15.1 FPI Configuration Register

Flash operations are activated via the FPI
configuration register. The following table describes
the FPI configuration register:

www.ramtron.com

page 103 of 114

VRS51L3174

rRAM RSN

The FPIADDRH register contains the MSB of the
destination address. For page erase operations, it
contains the page number where page erase
operations are performed.

TABLE 170:FPI Apbress Low -FPIADDRL SFR EAH

7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0
RIW
FPIADDR[7:0]

The FPIADDRL register contains the LSB of the
destination address where the operation is performed.
For page erase operations, it must contain the value
0x00.

The FPIDATAH and FPIDATAL registers contain the
data byte(s) required to perform the FPI function.

TABLE 171: FPI DATAHIGH - FPIDATAH SFR EDH

7 | 6] 5] 41 31 2 T 171 o

R/W, Reset = 0x00

FPIDATA[15:8]

When Read: MSB of last word read[15:8] from Flash
When Write: Byte[15:8] to write in Flash

TABLE 172:FPI DATA Low - FPIDATAL SFR EcH

7 | 6 [5 [43 [2 | 1 [0

R/W, Reset = 0x00

FPIDATA[7:0]

Read: Last read byte[7:0] from Flash

Writing to this byte in 'FPI write mode' triggers the FPI
state machine to start the write action.

15.3 FPI Clock Speed Control Register

The FPI clock speed control register sets the FPI
module to an optimal speed based on the speed of the
system clock.

TABLE 173:FPI CLock SPEED CONTROL REGISTER - FPICLKSPD SFR EEH

7 6 5 4 3 2 1 0
R R R R R/W R/W R/W RW
0 0 0 0 0 0 0 0
Bit Mnemonic Description
74 Unused
3:0 FPICLKSPD Specifies speed of the system clock entering the
[3:0] FPI module

Frequency range:

0000 : 20MHz to 40 MHz

0001 : 10MHz to 20 MHz

0010 : 5MHz to 10 MHz

0011 : 2.5MHz to 5 MHz

0100 : 1.25MHz to 2.5 MHz
0101 : 625kHz to 1.25 MHz
0110 : 312.5kHz to 625 kHz
0111 : 156.25kHz to 312.5 kHz
1000 : 78.12kHz to 156.25 kHz
1001 : 39.06kHz to 78.125 kHz
1010 : 19.53kHz to 39.0625 kHz
Others : 9.76kHz to 19.53125 kHz

Use the settings found in the following table when
using the FPI at a speed other than the nominal speed
of the internal oscillator.

TABLE 174: SETTING THE FPICLKSPD REGISTER

Value Range

Minimum Maximum

0 (default) | 20.000 MHz 40.000 MHz
1 10.000 MHz 20.000 MHz

2 5.000 MHz 10.000 MHz

3 2.500 MHz 5.000 MHz

4 1.250 MHz 2.500 MHz

5 625.000 KHz 1.250 MHz
6 312.500 KHz | 625.000 KHz
7 156.250 KHz | 312.500 KHz
8 78.125 KHz 156.250 KHz

9 39.063 KHz 78.125 KHz
10 19.531 KHz 39.063 KHz
Other 9.766 KHz 19.531 KHz

The FPICLKSPD register must be set to the
corresponding system clock speed for proper operation
of the FPI module. For example, a 20.0 MHz clock
requires FPICLKSPD to be set to 1, while a 20.1 MHz
clock requires FPICLKSPD to be set to 0. |If
FPICLKSPD is set incorrectly, the Flash write
operation may not process correctly, causing data
corruption.

www.ramtron.com

page 104 of 114

VRS51L3174

rRAM RSN

15.4 Using the FPI Interface

15.4.1 Write Protection

The VRS51L3174 provides a safety mechanism to
prevent accidental writing or erasing of the Flash. The
following sequence must be written to the FPIDATAL
register to unlock the VRS51L3174 each time a write
is performed.

FPIDATAL < AAh
FPIDATAL < 55h

Not performing the above sequence will lock the FPI
module until a reset of the VRS51L3174 is performed.
Bit 7 and 6 of the FPICONFIG provide the status of the
FPI write protection circuitry.

15.4.2 FPIIDLE

This bit indicates whether the previous action is
complete and the FPI is idle. The FPIIDLE bit must be
checked before performing any FPI operation, to
ensure that the module is ready.

15.4.3 FPIRDY

When writing a stream of bytes or words, this bit
indicates whether the FPI is ready for the next write.
Note that AAh then 55h must first be written in order to
unlock the FPI module.

15.4.4 FPISBIT

The FPI8BIT bit of the FPICONFIG register defines
whether the FPI module read and write operations will
be performed in 8- or 16-bit format. When the FPISBIT
bit is set to 1, the FPI module will operate in 8-bit
mode. The 16-bit address of the Flash memory, where
the FPI operation will be performed, is defined by the
value of the FPIADDRH and FPIADDRL registers.

When the FPI module is used to write data into the
Flash memory, the FPIDATAL register holds the value
of the data to be written. When the FPI module is
used to read the Flash, the read value is returned via
the FPIDATAL register.

When the FPI8BIT bit is cleared, the FPI module will
operate in 16-bit mode. In this case, the address
range is defined by a 15-bit address (0000h to 7FFFh)
and must be written into the FPIADDRH and
FPIADDRL registers.

When a 16-bit FPI write operation is performed, the
16-bit data must be stored in the FPIDATAH and
FPIDATAL registers. When a Flash memory read
operation is performed, the 16-bit data will be returned
to the FPIDATAH and FPIDATAL registers.

15.5 Performing a Read

There are three ways to read directly from the
VRS51L3174 Flash memory:

1. Use the MOVC instruction
2. Use the FPI in 8-bit mode
3. Use the FPI in 16-bit mode

It may be preferable to use the FPI over the MOVC
instruction, because some compilers will optimize code
that repeatedly checks the Flash content. To do a
Flash read using the FPI interface, perform the
following steps:

o Make sure the FPI module is enabled.

o Set FPIADDRH and FPIADDRL to the
appropriate address (see section 1.1.4).

o Write 00000X00 to the FPICONFIG register,
where X = 1 if reading in 8-bit mode, and X =0
if reading in 16-bit mode.

o Loop until FPIIDLE is raised.

o Get the results from FPIDATAH and
FPIDATAL if in 16-bit mode, or from
FPIDATAL if in 8-bit mode.

45: FPIFLASH READ (8 BIT) ALGORITHM

lash Read using FP
(8 bit)

[EnableFPIModule |

Set Read address into
FPIADRH
FPIADRL

I

| Write 0x04 into FPICONFIG |<—

Read Data
from FPIDATAL

Read Data on Yes

Next Address?

www.ramtron.com

page 105 of 114

VRS51L3174

rRAM RSN

15.5.1 FPI Flash Read in 8-Bit Mode Example

The following code sequence follows the above
algorithm to read address ABCDh in 8-bit mode:

ORL PERHIPHEN2, #1 ; Enable FPI
MOV FPIADDRH, #0ABh ; Move in upper address
MOV FPIADDRL, #0CDh ; Move in lower address

MOV FPICONFIG, #04h ; Trigger the read in 8-bit mode

Wait:
MOV A, FPICONFIG ; Get the FPI status
JNB ACC.4, Wait ; Jump if not ready

; The read is now done. The result in FPIDATAL

15.5.2 FPI Flash Read in 16-Bit Mode Example

The following code sequence will read 16 bits from
address ABCD:

#include <VRS51L3174.h>
unsigned char ucupper;
unsigned char uclower;

void readFPI(int address)
{
unsigned char result;

PERIPHEN2 |= 1; /* Enable FPI */

FPIADDRH = (unsigned char) (address >> 8); /* Upper address */

FPIADDRL = (unsigned char) address; /* Lower address — automatically truncates */
FPICONFIG = 0; /* Trigger the read */

do

result = FPICONFIG & 0x20; /* Check for the FPI_IDLE bit */

while(!result)
ucupper = FPIDATAH;
uclower = FPIDATAL;

}
void main()

/*** SOME CODE***/
readFPI(0x55e6); /* This is address ABCD converted to 16 bit addressing */

/*** SOME CODE***/
while(1);

15.6 Erasing Flash

15.6.1 Page Erase

When storing nonvolatile data, it is necessary to erase
the Flash before writing to it. Programming is done by
byte or word boundary, while erase is done by page
boundary. A page is a contiguous block of 512
addresses. Page numbers can be calculated from the
following formula:

| Page = address / 512 |

Page 0 contains all the addresses from 0000h to
01FFh, page 1 contains all the addresses from 0200h
to 03FFh, and so on. There are 128 Flash pages on
the VRS51L3174 (64KB Flash).

To erase a page, follow these steps:

1. Ensure that the FPI module is enabled.
Write AAh to the FPIDATAL register.
Write 55h to the FPIDATAL register.
Write O to the FPIADDRL register.

Write the page number to the FPIADDRH
register.

Write 2 to the FPICONFIG register.
Wait for FPIIDLE to go high.

FIGURE 46: FPIFLASH PAGE ERASE ALGORITHM

(Flash Page Erase)

| Enable FPI Module |

o k~ w0 DN

|
Write AAh, then 55h
into FPIDATAL

Write 00h, into FPIADRL

Write Flash Page Number ,
into FPIADRH

Write 0x02 into FPICONFIG

FPIDLE==17?

15.6.2 FPIl Page Erase Example

This code sequence will erase page 64:

ORL PERHIPHENZ2, #1 ; Enable FPI

MOV FPIDATAL, #0AAh ; UNLOCK 1

MOV FPIDATAL, #055h ; UNLOCK 2

MOV FPIADDRL, #0 ; Move in 0

MOV FPIADDRH, #64 ; Move in page number
MOV FPICONFIG, #2 ; Trigger the page erase

Wait:
MOV A, FPICONFIG ; Get the FPI status
JNB ACC .4, Wait ; Jump if not ready

; The page is now erased

www.ramtron.com

page 106 of 114

VRS51L3174

rRAM RSN

15.6.3 Mass Erase

It is possible to completely erase the Flash memory
from within a program. To do so, the following steps
must be performed:

1. Make sure that the FPI module is enabled.
2. Write AAh to the FPIDATAL register.

3. Write 55h to the FPIDATAL register.

4. Write 1 to the FPICONFIG register.

5. If still possible, wait for FPIIDLE to go high.

Warning: At this point, the Flash should be totally
erased. If running from external memory, ensure that
the program is copied back to its locations in Flash
with write commands. Step 5 can only be performed if
executing code from external SRAM.

15.7 Writing to the Flash
There are two methods to write to the Flash:

o 8-bit double buffered
o 16-bit double buffered

Depending on the complexity and the amount of Flash
to be written, one mode may be more efficient than the
other: 8-bit mode is more suited to programming a few
bytes of data, while 16-bit mode is more suited to
memory dumping.

15.7.1 Writing the Flash in 8-bit mode
Follow the steps below to write in 8-bit mode:
1. Make sure the FPI module is enabled.

2. Write 7 to the FPICONFIG register.

3. Set FPIADDRH and FPIADDRL to the
appropriate addresses.

Write AAh to the FPIDATAL register.
Write 55h to the FPIDATAL register.

Write data to the FPIDATAL register (this
triggers the operation).

7. If complete, wait for FPIDLE to go high. If
there are more bytes to be written at a
different address, return to step 3. If the next
address is contiguous, go to step 4 instead.

FIGURE 47: FPI FLASH BYTE WRITE ALGORITHM

Flash Write
(8 bit)
A4
[Enable FPIModule | | Write AAR, then 55h
I into FPIDATAL -

I
| Write 07h into FPICONFIG | Write Data
I into FPIDATAL

Set write address into
FPIADRH
FPIADRL

I

FPIDLE ==17?

Data on Next
Address?

Note that the address the data is written to will be
automatically incremented for the next byte. As such,
the address only needs to be written once per data
stream (assuming that a contiguous block is written),
as shown in the following example.

15.7.2 FPI Flash Write in 8-Bit Mode Example

1
II* FPI Flash Write 8bit Mode Example *

1
#include <VRS51L3174.h>
a

;I'his function uses the FPI module to write a null terminated string to flash
vloid copy_to_Flash(int address, char *str)

unsigned char ready; /* Is the FPI idle? */

PERIPHEN2 |= 1; /* Enable FPI*/

/* Upper address */
FPIADRH = (unsigned char) (address >> 8);
/* Lower address - automatically truncates */
FPIADRL = (unsigned char) address;
FPICONFIG =7; /* Trigger the write

in 8 bit mode */

while(*str) /* while not null */

{

FPIDATAH = 0x00;

FPIDATAL = Oxaa; /* 1st step unlock */
FPIDATAL = 0x55; /* 2nd step unlock */
FPIDATAL = (unsigned char)(*str);

/* Wait for the buffer to be ready */
I* The operation is not finished, check for FPI_READY */
do

{
ready = FPICONFIG & 0x10;
Ywhile(!ready);

str++;

}

/* Null character encountered, write an
additional 0 to memory */

FPIDATAL = Oxaa; /* 1st step unlock */
FPIDATAL = 0x55; /* 2nd step unlock */
FPIDATAL =0; /* End in null - this avoids

having to pass the string
length */

/* The operation is finished, check for FPI_IDLE instead of FPI_READY */
do

www.ramtron.com

page 107 of 114

VRS51L3174

rRAM RSN

ready = FPICONFIG & 0x10;
Iwhile(!ready);

return;
void main(void)
*** CODE ***/
copy_to_Flash(0x3000, "Ramtron Inc");
copy_to_Flash(0x4000, "Microsystems connecting two worlds");
*** CODE ***/

while(1);
}

15.7.3 Writing to the Flash in 16-Bit Mode

Follow the steps below to write in 16-bit mode:
1. Make sure the FPI module is enabled.
2. Write 3 to the FPICONFIG register.
3. Set FPIADDRH and FPIADDRL

appropriate addresses (remember to convert

to 16-bit addressing).
Write AAh to the FPIDATAL register.
Write 55h to the FPIDATAL register.

Write data to the FPIDATAL register (this

triggers the operation).

7. If complete, wait for FPI_IDLE to go high. If
there are more bytes to be written at a different
address, return to step 3. If the next address is

contiguous, go to step 4 instead.

Note that the address the data is written to will be
automatically incremented for the next byte. As such,
the address only needs to be set once per data stream
(assuming a contiguous region is written), as shown in

the following example.

15.7.4 FPI Flash Write in 16-Bit Mode Example

This routine copies 512 bytes (1 page) of external
SRAM to the Flash memory at address EOOOh +
XRAM. The RO and R1 registers contain the starting

address of the page to copy.

"
/I* FPI Flash Write 16-bit Mode Example *
"

WRITE_PAGE:
PUSH DPHO ;PUSH THE DATA POINTER
PUSH DPLO
PUSH ACC ;PUSH THE VAR. TO BE USED
PUSH B
MOV ACC, R2
PUSH ACC

MOV DPHO, R1 ;LOAD THE DATA POINTER

MOV DPLO, RO

MOV R2, #255 ;LOOP COUNTER (511 BYTES)

ORL PERHIPHEN2, #1 ;ENABLE FPI MODULE

MOV FPICONFIG, #3 ;ENABLE WRITING IN 16 BIT ;MODE
; SET THE ADDRESS MUST BE 16 BITS (ADDRESS / 2)

CLRC ;CLEAR THE CARRY FLAG
MOV A, R1
RRC A ;CHECK IF THERE WILL BE A CARRY

CLRA
RRC A

MOV FPIADRL, A
MOV A, R1
RRA
ADD A, #7

MOV FPIADRH, A ;
WRITE_PAGE_LOOP:

MOV FPIDATAL, #0AAh
MOV FPIDATAL, #055h
MOVX A, @DPTR

MOV B, A

INC DPTR

MOVX A, @DPTR

INC DPTR

MOV FPIDATAH, A

MOV FPIDATAL, B
;AND START THE WRITE

WRITE_PAGE_LOOP_WAIT:
MOV A, FPICONFIG
JNB ACC.4

DJINZ R2

;DOES NOT AFFECT CARRY BIT
;SETS A TO 80h IF R1 WAS ODD, OR
;KEEPSIT 0

:SET LOWER ADDRESS

:DIVIDE ADDRESS BY 2

:ADDS E000H TO THE ADDRESS
:(E000 / 2 = 7000)

SET UPPER ADDRESS

;UNLOCK STEP 1
;UNLOCK STEP 2

iNEXT BYTE

;NEXT BYTE
;SET THE UPPER VALUE
;SET THE LOWER VALUE

:CHECK TO SEE IF THE

:BUFFER IS READY

:JUMP IF FPI_READY IS NOT HIGH
WRITE_PAGE_LOOP_WAIT

JWRITE_PAGE_LOOP

;NOW WRITE THE LAST WORD (BYTE 511 AND 512)

MOV FPIDATAL, #0AAh
MOV FPIDATAL, #055h

MOVX A, @DPTR
MOV B, A
INC DPTR

MOVX A, @DPTR
INC DPTR
;(not necessary)
MOV FPIDATAH, A
MOV FPIDATAL, B
;AND START THE WRITE
WRITE_PAGE_LAST_WAIT:
MOV A, FPICONFIG

;UNLOCK STEP 1
;UNLOCK STEP 2

;NEXT BYTE

:NEXT BYTE
;SET THE UPPER VALUE
;SET THE LOWER VALUE

;CHECK TO SEE IF THE
;BUFFER IS READY

JUMP IF FPI_IDLE IS NOT HIGH (LAST WORD)

JNB ACC.4

;RESTORE VARIABLES USED

POP B

POP ACC
MOV R3, ACC
POP ACC
POP DPLO
POP DPHO
RET

. WRITE_PAGE_LAST_WAIT

;RETURN TO CALLER

www.ramtron.com

page 108 of 114

VRS51L3174

rRAM RSN

15.7.5 FPI Flash Write, Read, Sector Erase
Example

11 1

/I V2K_FPI_Flash_WR_RD_SErase_8bit_SDCC.c //
1//- //

/i

/I DESCRIPTION: VRS51L2070/ VRS51L3174

A FPI 8 bit Write, 8 bit Read & Sector Erase Demonstration Program.

//- //
#include <VRS51L3174_SDCC.h>

void main (void) {

char tablewr[] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55}; //Data Table to copy into Flash
char tablerd[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; /Data Table to copy data from

Flash

char count = 0x00; /ICounter variable
/I Performing FPI 8 bit Write
PERIPHEN2 |= 0x01;
FPICLKSPD = 0x00;

/I[Enable the FPI Module

/lcurrent System clock speed
//--Configure the FPI module Start address
FPIADDRH = 0x51;
FPIADDRL = 0x00;

/ISet MSB of the address
/ISet LSB of the address

/ISet FPI for 8 bit Write
FPICONFIG = 0x07; /IBit2 =1: Set 8 bit mode
//Bit [1:0] = 11: Set Write operation

/I--Copy the content of tablewr[] into the Flash memory
for(count = 0x00;count <= 0x05; count++)

{

//\Write the pointed data byte into the FLASH

FPIDATAL = 0xAA; //Unlock security 1

FPIDATAL = 0x55; /lUnlock security 2

FPIDATAL = tablewr{count]; /Write Data into Flash memory

/I-Check that FPI module is ready
/[(This is Required only if the Program executes from 4K SRAM)
while((FPICONFIG & 0x10) == 0x00);

Ylend of for loop writing data into Flash

//--Use the FPI module to read the data written into the Flash to the tablerd[] table
/I--Reset the FPI Flash start address
FPIADDRH = 0x51;

FPIADDRL = 0x00;

//Set MSB of the address
//Set LSB of the address

for(count = 0x00;count <= 0x05; count++)

{

/ISet FPI for 8bit read operations

FPICONFIG = 0x04; /IBit2 =1: Set 8 bit mode
//Bit [1:0] = 00: Set Read operation

/I-Check that FPI module is ready

/[This is Required only if the Program executes from 4K SRAM

while((FPICONFIG & 0x10) == 0x00);

tablerd[count] = FPIDATAL; //Copy data byte present into the

//IFPIDATAL register into tablerd[]
}Y/lend of for loop comparing data in flash with Table content

/I--Perform a sector Erase of the Flash memory

//Page address is defined by:

" FPIADRH = Round Down(address / 512)

/[Erase Page that covers addresses range 5000h - 51FFh
FPIDATAL = 0xAA;

FPIDATAL = 0x55;

FPIADDRL = 0x00;

FPIADDRH = 0x28;

FPICONFIG = 0x02;

/I-Check that FPI module is ready
/[This is Required only if the Program executes from 4K SRAM

while((FPICONFIG & 0x10) == 0x00);
while(1);

Y/ End of main

//Set FPI module clock speed according to

Tips on Using the FPI Interface

The following tips can be used to get the most out of
the IAP features on the VRS51L3174.

Shorter programming time can be achieved if
the FPI Flash write routines are run from the
4KB external SRAM, as the circuitry that reads
instructions from the Flash does not interfere
with the FPI module.

The Flash must be erased before
reprogramming, and the same value should
not be written more than once to the same
Flash address, unless an erase cycle is
performed in between writes.

To maximize the endurance of the
VRS51L3174 Flash memory, FPI Flash page
erase operations should be done sparingly.
The FPI mass erase function will erase the
entire VRS51L3174 Flash memory, including
code already programmed.

IAP can be performed even if the Flash
protection is enabled. It is the responsibility of
the programmer not to reveal the Flash
information of a secured device via the IAP.
When write operations are performed at the
boundaries of two contiguous blocks of
memory, the address will automatically
increment to the next byte/word after a write
cycle. This can save processor cycles.

The FPI read can be used to perform Flash
memory reads, however using the MOVC
instruction is more efficient.

Make sure that the location being written to
does not interfere with the program running in
the Flash.

www.ramtron.com

page 109 of 114

VRS51L3174

rRAM RSN

16 External Crystal

By default, the VRS51L3174 derives its clock from its
internal oscillator. It is also possible to use external
crystal for the VRS51L3174 clock source. The crystal
connected to the VRS51L3174 oscillator input should
be parallel cut type, operating in fundamental mode.

The addition of 15 to 20pF load capacitors is
recommended. See the following figure for a
connection diagram.

Note: Oscillator circuits may differ with different
crystals or ceramic resonators in higher oscillation
frequency. Crystals or ceramic resonator
characteristics may also vary from one manufacturer
to another.

The user should review the technical literature
associated with specific crystal or ceramic resonator s
or contact the manufacturer to select the appropriate
values for the external components.

FIGURE 48: VRS51L3174 EXTERNAL CRYSTAL OSCILLATOR CONFIGURATION

XTAL o

XTAL1

VRS51L3074

XTAL2

www.ramtron.com

page 110 of 114

VRS51L3174

rRAM RSN

17 Operating Conditions

17.1 Absolute Maximum Ratings

Parameter Min. Max. Unit Notes
Supply voltage input (VDD — VSS) 0 3.6 V
I/O input voltage all except P4.6 & P4.7 -0.5V 5.5V V
I/O input voltage P4.6 & P4.7 only VCC-0.5 VCC+0.5 \
Maximum /O current (sink/source) -
QFP-44 package 100 mA Preliminary
Storage temperature -55 125 °C
17.2 Nominal operating conditions
TABLE 175: OPERATING CONDITIONS
Symbol Description Min. Typ. Max. Unit Remarks
TA Operating temperature -40 +85 °C
VCCV Supply voltage 3.0 3.3 3.6 V
Fextosc 40 Ext. Oscillator Frequency 0 - 40 MHz
FextCY Ext. Crystal frequency 4 40 MHz
32 100 KHz
Internal Oscillator Operating frequency 39.7 40 40.3 MHz
Internal Oscillator temperature stability +/-2 % 0 to +70°C
Internal Oscillator temperature stability +/-3 % -40 to +85°C
FRAM data retention 45 - - Years
FRAM byte Write 1.1 uS
FRAM Byte Read 0.4 usS
Flash Endurance(Erase / Write cycles) 20K Cycles
Flash Data retention 100 Years At room temperature
Flash Page Erase duration 20 ms
Flash Byte/Word programming time 20 uS
17.3 DC Characteristics
VCC = 3.3V, Temp = 25°C, No load on I/Os
TABLE 176: DC CHARACTERISTICS
Symbol Parameter Valid Min. Typ Max. Unit Test Conditions
VIL1 Input Low Voltage Port 0,1,2,34 -0.35 0.80 \ VCC=3.3V
VIL2 Input Low Voltage RESET, XTAL1 -0.35 0.80 \ VCC=3.3V
VIH1 Input High Voltage Port 0,1,2,3,4 2.0 5.5 \ VCC=3.3V
VI H2 Input High Voltage RES, XTAL1 2.0 5.5 \ VCC=3.3V
VOL1 Output Low Voltage Port 0,1,2,34,ALE 0.4 V I0OL = Rated 1/0O max current
VOH2 Output High Voltage Port 0,1,2,3,4,ALE 2.4V ?)/%(i/_ \Y Max Rated 1/O Current
ILI Input Leakage Current Port 0,1,2,3,4 10 uA (+/-)
RREs | ResetEquivalentPull- | opg 74 104 177 Kohm
up Resistance
C10 Pin Capacitance 10 pF Freq=1 MHz, Ta=25C
Active mode, 40MHz
17 32 mA (Int. Oscillator)
Active mode, 10MHz
7.9 12 mA (Int. Osgcillator)
Icc Supply Current VDD 6.2 8.5 mA Active mode 5 MHz
(Ext. Crystal)
Idle mode, oscillator running
3.6 11 mA 40MHz
11 mA OSC stop mode, 32kHz
Crystal osc mode

www.ramtron.com

page 111 of 114

VRS51L3174

rRAM RSN

17.4 Timing Requirement of the External Clock

The following diagram shows the timing of an external clock driving the VRS51L3174 input.

FIGURE 49: TIMING REQUIREMENT OF EXTERNAL CLOCK (VSS= 0.0V IS ASSUMED)

CLKPER

Vdd-05V emmmemem——
0.5v
CLKLOW >‘ CLKHIGH
CLKFT CLKRT
TABLE 177: EXTERNAL CLOCK TIMING REQUIREMENTS
Variable Fosc
Symbol Parameter Min. Typ Max. Unit
CLKPER | Ext. clock period 25 nS
CLKLOW | Ext. clock low duration 12.5 nS
CLKHIGH | Ext. clock high duration 12.5 nS
CLKFT Ext. clock fall time nS
CLKRT Ext. clock rise time nS

www.ramtron.com

page 112 of 114

VRS51L3174 rRAMTRSON

18 VRS51L3174 QFP-44 Package

FIGURE 50: VRS51L3174 QFP-44 PACKAGE DRAWINGS

ot HiNninninnnn
— 5 43 42 41 40 39 38 37 36 35 3433:|
[2 |
(s 31|
[s | i 9 v
s 20] A2 |
- A1l d3 c
w w [s 28 | T —{ | Mb‘k —» e T
[+ 271] L ©
[s 2| |
[25 |
[] 10 AN
L] 1112 13 14 15 16 17 18 19 20 21 2223:|
v LUt yguy
D1 ‘

o

. A

TABLE 178: DIMENSIONS OF QFP-44 PACKAGES

Symbol | Description Dimension Tolerance
(mm) (mm, °) / Notes
D Footprint 13.2 +/- 0.25
D1 Body size 10 +/-0.10
E Footprint 13.2 +/- 0.25
E1 Body size 10 +/-0.10
A1 Stand-off 0.25 Max
A2 Body thickness | 2.00
L Lead Length 0.88 +0.15/-0.10
b Lead width 0.35 +/- 0.05
c L/C thickness 0.17 Max
e Lead pitch 0.8
d1 Body edge 100
angle
d2 Lead angle 6° +/- 4°
d3 Lead angle 0°to 7°

www.ramtron.com page 113 of 114

VRS51L3174 rRAMTRSON

19 Ordering Information

19.1 Device Number Structure

VRS51 L 3174-40-X X X

. Green

G = Green (lead-free)

— Temperature Range
Blank = Industrial (-40°C to +85° C)

Package Options
Q=44 pins Quad Flat Pack (QFP-44)

Operating Frequency

40: 40MHz oscillator frequency

Product Number
3174 - 44 pin package, 8KB FRAM

Operating Voltage
L=3.0V-3.6Volts

19.2 VRS51L3174 Ordering Options

TABLE 179: VRS51L3174 PART NUMBERING

Device Number Flash | FRAM SRAM Package Voltage Temperature | Frequency
Size Size Size Option
VRS51L3174-40-QG 64KB 8KB 4352 QFP-44 3.0V to 3.6V | -40°C to +85°C 40MHz

* Contact Ramtron for product availability

Errata:
e Readback of the content in the THx/TLx and RCAPxH/RCAPXL timer registers will return to 0x00 unless the
corresponding timer is running or, for the timers 0 and 1, the timer gating bit is set.
e There is a problem with the watchdog timer reset that occurs when the VRS51L.3174 is running from an
external crystal or an oscillator and the device have been programmed with Clock Divisor set to OFF in the
Device Options settings of Versa Ware JTAG. The work around this problem is simple:
o Program the device with Clock divider set to either Fosc/2, Fosc/4 or Fosc/8
o In the beginning of user code, add the line: DEVCLKCFG = 0x00;

Disclaimers

Right to make change - Ramtron reserves the right to make changes to its products - including circuitry, software and services - without notice at
any time. Customers should obtain the most current and relevant information before placing orders.

Use in applications - Ramtron assumes no responsibility or liability for the use of any of its products, and conveys no license or title under any
patent, copyright or mask work right to these products and makes no representations or warranties that these products are free from patent,
copyright or mask work right infringement unless otherwise specified. Customers are responsible for product design and applications using Ramtron
parts. Ramtron assumes no liability for applications assistance or customer product design.

Life support — Ramtron products are not designed for use in life support systems or devices. Ramtron customers using or selling Ramtron’s
products for use in such applications do so at their own risk and agree to fully indemnify Ramtron for any damages resulting from such applications.

I1>C is a trademark of Koninklijke Philips Electronics NV.

www.ramtron.com page 114 of 114

	Overview
	Pin Description
	Instruction Set
	SFR Page 0
	SFR Page 1
	Registers & SFR
	Memory Architecture
	Integrated 8KB FRAM
	External Data Bus Access
	External Data Bus CS (DBCS)
	System Clock Configuration
	Peripherals Enable
	I/O Ports
	Port Pin Change Monitoring
	Timer 0 & Timer 1
	Timer 2
	PWC: Pulse Width Counters
	UARTs
	SPI Interface
	I2C Interface
	PWM: Pulse Width Modules
	PWM as Timers
	Enhanced Arithmetic Unit
	Watchdog Timer
	Interrupts
	JTAG Interface
	FPI: Flash Programming Interface
	External Crystal
	Operating Conditions
	QFP-64 Package
	Ordering Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

