

Atmel Wireless & Microcontrollers

Atmel Wireless & Microcontrollers CAN Tutorial

Gerhard Goller

gerhard.goller@atmel-wm.com

Atmel Wireless & Microcontrollers

- Introduction or: What is CAN?
- Why CAN?
- **CAN Protocol**
- **CAN higher Layer Protocols**
- **CAN Applications**
- **CANary: Atmel CAN Microcontrollers & Roadmap**
- >> Application Support
- **Conclusion**

WIRELESS & µC

Atmel Wireless & Microcontrollers

Introduction

- The CAN is an ISO standard (ISO 11898) for serial communication
- The protocol was developed 1980 by BOSCH for automotive applications

• Today CAN has gained widespread use:

- Industrial Automation
- > Automotive, ...etc.
- The CAN standard includes:
 - * > Physical layer
 - Data-link layer
 - Some message types
 - Arbitration rules for bus access
 - Methods for fault detection and fault confinement

WIRELESS & µC

Atmel Wireless & Microcontrollers

Why CAN?

- Mature Standard
 - CAN protocol more than 14 years
 - Numerous CAN products and tools on the market
- Hardware implementation of the protocol
 - Combination of error handling and fault confinement with high transmission speed
- Simple Transmission Medium
 - > Twisted pair of wires is the standard, but also just one wire will work
 - > Other links works, too: Opto or radio links
- Excellent Error Handling
 - > Strong point of the protocol: § Extensive error detection mechanism
- Fine Fault Confinement
 - Built-in feature to prevent faulty node to block system
- Most used protocol in industrial and automotive world
- Best Performance / Price ratio

Atmel Wireless & Microcontrollers

CAN Protocol

>> What is CAN?

- >> ISO-OSI Reference Model
- >> CAN Bus Logic
- >> Typical CAN Node
- **CAN Bus Access and Arbitration**
- >> CAN Bit Coding & Bit Staffing
- CAN Bus Synchronization
- CAN Bit Construction
- Relation between Baud Rate and Bus Length

- >> Frame Formats (1)
- >> Frame Formats (2)
- >> Frame Formats (3)
- Frame Formats (4)
- Fault Confinement (1)
- Fault Confinement (2)
- Undetected Errors

What is CAN?

- Controller Area Network
 - Invented by Robert Bosch GmbH
 - Asynchronous Serial Bus
 - Absence of node addressing
 - Message identifier specifies contents and priority
 - Lowest message identifier has highest priority
 - Non-destructive arbitration system by CSMA with collision detection
 - Multi-master / Broadcasting concept
 - Sophisticated error detection & handling system
 - Industrial and Automotive Applications

ISO-OSI* Reference Model

Agenda CAN Protocol

7

Atmel Wireless & Microcontrollers

CAN Bus Logic

Agenda CAN Protocol

8

Agenda

CAN Tutorial

Atmel Wireless & Microcontrollers

Typical CAN Node

CAN Bus Access and Arbitration: CSMA/CD and AMP *)

*)Carrier Sense Multiple Access/Collision Detection and Arbitration by Message Priority

CAN Bit Coding & Bit Staffing

- Bit Coding : NRZ (Non-Return-To-Zero code) does not ensure enough edges for synchronization
- Stuff Bits are inserted after 5 consecutive bits of the same level
- Stuff Bits have the inverse level of the previous bit.
- No deterministic encoding, frame length depends on transmitted data

CAN Bus Synchronization

• Hard synchronization at Start Of Frame bit

Re-Synchronization on each Recessive to Dominant bit

Agenda

Atmel Wireless & Microcontrollers

CAN Bit Construction

- Length of one time quanta can be set to multiple of µController clock •
- **1** Time quantum = 1 period of CAN Controller base clock •
- Number of time quanta in Propag and Phase segments is \bullet programmable

Relation between Baud Rate and Bus Length

Example based on CAN Bus Lines by twisted pair

Atmel Wireless & Microcontrollers

Frame Formats (1)

Atmel Wireless & Microcontrollers

Frame Formats (2)

(*) RTR = dominant

Frame Formats (3)

- If any of the CAN nodes detects a violation of the frame format
- or a stuff error, it immediately sends an Error Frame

Frame Formats (4)

- If any of the CAN nodes suffers from a "data over flow", it might send
- up two consecutive Overload Frames to delay the network

19

WIRELESS & µC

Atmel Wireless & Microcontrollers

Fault Confinement (1)

• Three fundamental states define each node's error signaling

- Error active: Normal state, node can send all frames incl.error frames
- Error passive: Node can send all frames excluding error frames
- > Bus off: Node is isolated from bus
- Internal error counts determine the state
 - Transmit error counter (TEC)

An error increases the counter by 8

- Receive error counter (REC)
 A successful operation decreases by 1
- Aims to prevent from bus dead-locks by faulty nodes ightarrow

Fault Confinement (2)

- Cyclic Redundancy Check (CRC)
- The CRC is calculated over the non-stuffed bit stream starting with the SOF and ending with the Data field by the transmitting node
- The CRC is calculated again of the destuffed bit stream by the receiving node
- A comparison of the received CRC and the calculated CRC is made by the receiver
- In case of mismatch the erroneous data frame is discarded. Instead of sending an acknowledge signal an error frame is sent.

Undetected Errors

- Error statistics depend on the entire environment
- Total number of nodes
- Physical layout
- EMI disturbance
- Automotive example
- 2000 h/y
- 500 kbps
- 25% bus load

CAN Higher Layer Protocols (HLPs)

Why HLPs
CANOpen
DeviceNet
CAN Kingdom
OSEK/VDX
SDS
J1939

Why HLPs

- The CAN protocol defines only the 'physical' and a low 'data link layer'!
- The HLP defines:
 - Start-up behavior
 - Definition of message identifiers for the different nodes
 - Flow control
 - transportation of messages > 8bytes
 - Definition of contents of Data Frames
 - Status reporting in the system

Atmel Wireless & Microcontrollers

Features

- > CANopen a subset from CAL (CAN Application Layer) developed by CiA!
- Auto configuration the network
- > Easy access to all device parameters
- Device synchronization
- > Cyclic and event-driven data transfer
- > Synchronous reading or setting of inputs, outputs or parameters
- Applications
 - Machine automatisation
- Advantages
 - > Accommodating the integration of very small sensors and actuators
 - Open and vendor independent
 - Support s inter-operability of different devices
 - High speed real-time capability

Atmel Wireless & Microcontrollers

DeviceNet

- Features
 - Created by Allen-Bradley (Rockwell Automatisation nowadays), now presented by the users group ODVA (Open DeviceNet Vendor Association)
 - Power and signal on the same network cable
 - Bus addressing by: Peer-to-Peer with multi-cast & Multi-Master & Master-Slave
 - Supports only standard CAN

• Applications

- Communications link for industrial automatisation: devices like limit switches, photo-electric sensors, valve manifolds, motor starters, process sensors, bar code readers, variable frequency drives, panels...
- Advantages
 - Low cost communication link and vendor independent
 - Removal and replacement of devices from the network under power

WIRELESS & µC

Atmel Wireless & Microcontrollers

CAN Kingdom

- CAN Kingdom is more then a HLP: A Meta protocol
 - Introduced by KVASER, Sweden
 - A 'King' (system designer) takes the full responsibility of the system
 - > The King is represented by the Capital (supervising node)
 - World wide product identification standard EAN/UPC is used for
- Applications
 - Machine control, e.g. industrial robots, weaving machines, mobile hydraulics, power switchgears, wide range of military applications
- Advantages
 - Designed for safety critical applications
 - Real time performance
 - Scalability
 - Integration of DeviceNet & SDC modules in CAN Kingdom possible

OSEK/VDX

Offene Systeme und deren Schnittstellen fuer die Elektonik im Kraftfahezeug/Vehicle Distributed eXecutive)

- Initialized by:
 - BMW, Bosch, DaimlerChrysler, Opel, Siemens, VW & IIIT of the University of Karlsruhe / PSA and Renault

• OSEK/VDX includes:

- Communication (Data exchange within and between Control Units)
- > Network Management (Configuration determination and monitoring)
- > Operating System (Real-time executive for ECU software)
- Motivation:
 - High, recurring expenses in the development and variant management of non-application related aspects of control unit software
 - Compatibility of control units made by different manufactures due to different interfaces
- Goal: Portability and re-usability of the application software
- Advantages: Clear saving in costs and development time

Atmel Wireless & Microcontrollers

SAE J1939

- Features
 - Developed by Society of Automotive Engineers heavy trucks and bus division (SAE)
 - Use of the 29 identifiers
 - Support of real-time close loop control
- Applications
 - Light to heavy trucks
 - Agriculture equipment e.g. tractors, harvester etc...
 - Engines for public work

Smart Distributed System (SDS)

- Features
 - Created by Honeywell
 - Close to DeviveNet, CAL & CANopen

Atmel Wireless & Microcontrollers

CAN: a Large Field of Applications

> Building Automatisation
> Domestic & Food distribution appliances
> Automotive & Transportation
> Robotic
> Production Automatisation
> Medical
> Agriculture

Building Automatisation

- Heating Control
- Air Conditioning (AC)
- Security (fire, burglar...)
- Access Control
- Light Control

Domestic & Food distribution appliances

- Washing machines
- Dishes cleaner
- Self-service bottle distributors connected to internet

WIRELESS & µC

Atmel Wireless & Microcontrollers

Automotive & Transportation

- Automotive
 - Dash board electronic
 - Comfort electronic
- Ship equipment
 - Train equipment
 - Lifts
 - > Busses
 - Trucks
 - Storage transportation systems
 - Equipment for handicapped people
- Service & Analysis systems

Atmel Wireless & Microcontrollers

Robotic

- Tool machines
- Transport systems
- Assembly machines
- Packaging machines
- Knitting machines
- Plastic injection machines
- etc...

Atmel Wireless & Microcontrollers

Production Automatisation & Robotic

- Control and link of production machines
- Production control
- Tool machines
- Transport systems
- Assembly machines
- Packaging machines
- Knitting machines
- Plastic injection machines
- etc...

Atmel Wireless & Microcontrollers

Agriculture

- Harvester machines
- Seeding/Sowing machines
- Tractor control
- Control of live-stock breeding equipment

Atmel Wireless & Microcontrollers

CANary: the ultimate Flash-based CAN microcontrollers

Atmel CAN Bus Controller

- Main Features
- >> Mailbox concept (1)
- Mailbox concept (2)
- >> Channel Data Buffer (1)
- >> Channel Data Buffer (2)
- Autobaud & Listening Mode
- >> Auto Reply Mode
- >> Time Triggered Mode
- **>>** Error Analysis Functions
- >> CAN Self Test
- >> Atmel CANary Controller
- Conclusion

CANary Family Benefits

- >> In-System-Programming
- >> Secured Boot Flash Memory
- >> Advanced CAN Controller
- >> Advanced C51 Core
- >> T89C51CC01
 - Block Diagram
 - >> Features (1) Features (2)
 - Advantages
 - Applications
- >> T89C51CC02
 - Block Diagram
 - >> Features (1) Features (2)
 - Advantages
 - >> Key messages
 - Applications
- >> Atmel CAN MCU Roadmap

CAN Controller: Main Features

- Full validation by iVS/C&S Wolfenbüttel/Germany
- 1 MHz/sec CAN Bus Data Rate at 8 MHz Crystal
- Frequency in X2 Mode
- CAN 2.0A and 2.0B programmable / Channel
- 15 Channel with 20 Bytes of Control & Data / Channel
- 120 Bytes Reception Buffer
- Support of Time Triggered Communication (TTC)
- Auto Baud, Listening & Automatic Reply mode
- Mail Box addressing via SFRs
- All Channel features programmable on-the-fly

Atmel Wireless & Microcontrollers

CAN Controller: Mailbox concept (1)

CAN Controller: Mailbox concept (2)

- Channel features
 - > 32 bit of ID Mask Register
 - > 32 bit of ID Tag Register
 - 64 bit of cyclic Data Buffer Register
 - > 16 bit of Status, Control & DLC
 - > 16 bit of Time Stamp Register

CAN Controller: Channel Data Buffer (1)

- Main Features
 - > 15 Channels of 8 Byte (120 Bytes) Data Buffer
 - > All Channels programmable as:
 - Receiver
 - Transmitter
 - Receiver Buffer
 - Highest Priority for lowest Channel Nr.
 - > Interrupts at:

CANary family

Agenda

- Correct Reception of Message
- Correct Transmission
- Reception Buffer full

Ch. 14 - Data Buffer (8) Ch. 13 - Data Buffer (8)

- Ch. 12 Data Buffer (8)
- Cii. 12 Data Duiler (0)
- Ch. 11 Data Buffer (8)
- Ch. 10 Data Buffer (8)
- Ch. 9 Data Buffer (8)
- Ch. 8 Data Buffer (8)
- Ch. 7 Data Buffer (8)
- Ch. 6 Data Buffer (8)
- Ch. 5 Data Buffer (8)
- Ch. 4 Data Buffer (8)
- Ch. 3 Data Buffer (8)
- Ch. 2 Data Buffer (8)
- Ch. 1 Data Buffer (8)

Ch. 0 - Data Buffer (8)

CAN Tutorial

CAN Controller: Channel Data Buffer (2)

- Reception Buffer Features:
 - Several Channels with same ID Mask (no important message will be missed)
 - Lowest Channel Number served first
 - Each Channel can participate (no consecutive sequence needed)

CANary family

Agenda

Ch. 14 - Data Buffer (8) Ch. 13 - Data Buffer (8) Ch. 12 - Data Buffer (8) Ch. 12 - Data Buffer (8) Ch. 11 - Data Buffer (8) Ch. 10 - Data Buffer (8) Ch. 9 - Data Buffer (8) Ch. 8 - Data Buffer (8) Ch. 7 - Data Buffer (8) Ch. 6 - Data Buffer (8) Ch. 5 - Data Buffer (8) Ch. 3 - Data Buffer (8) Ch. 3 - Data Buffer (8) Ch. 2 - Data Buffer (8) Ch. 1 - Data Buffer (8) Ch. 0 - Data Buffer (8)

42

CAN Controller: Autoband & listening mode

- CAN monitoring without influence to the bus lines
 - No acknowledge by error frames
 - Error counters are frozen
 - Only reception possible
 - No transmission possible
 - Full error detection possible
- Bit-rate adaption support
 - Hot-plugging of bus nodes to running networks with unknown bitrate

CAN Controller: Automatic Reply Mode

- Automatic Message Transfer
 - Automatic message transfer after
 - reception of Remote Frame
 - Deferred message transfer after
 - reception of Remote Frame
 - Automatic Retransmission of Data Frames under
 - Software control

CAN Controller: Time Triggered Communication (TTC)

- Support of Real Time Applications
 - Single shot transmission
 - > 16 bit CAN timer with IT at overflow
 - > 16 bit Time Stamp Register / Channel
 - Trigger for Time Stamp Register at
 - End of Frame (EOF) or Start of Frame (SOF)

CAN Controller: Error Analysis Functions

- Channel Status Register (Error Capture Register)
 - Associated to each Channel
 - Type of CAN bus errors: DLC warning, Transmit OK, Receive OK, Bit error (on in transmit), Stuff error, CRC error, Form error, Acknowledgement error
- Error Interrupts
 - Bus errors, Error passive and Error warning
- Readable Error Counters

Atmel Wireless & Microcontrollers

CAN Controller: CAN Self Test

- Analysis of own transmitted Message
- Support of local self test
- Support of global self test
- Software comparison of Tx & Rx buffer
- Monitoring of CAN bus traffic

CANary family

Agenda

Atmel Wireless & Microcontrollers

CAN Controller: The Atmel CANary controller

- 15 Message objects (Channels), each with filtering, masking and FIFO buffer
- All Channel features programmable on-the-fly

CAN Controller: Conclusion

- 1 MHz/sec CAN Bus Data Rate at 8 MHz Crystal Freq.
- CAN 2.0A and 2.0B programmable / Channel
- 15 Channel with 20 Bytes of Control & Data / Channel
- 120 Bytes Reception Buffer
- Support of Time Triggered Communication (TTC)
- Auto Baud, Listening & Automatic Reply mode
- Mail Box addressing via SFRs
- All Channel features programmable on-the-fly
- All competitors knows how to do a basic CAN, but all CAN differ in acceptance filtering and frame storage capabilities.

CANary Microcontrollers: Advantages (1)

In-System-Programming (ISP)

- Code loading and EEPROM up-date in embedded applications via CAN Bus or UART
- Customer 32kByte Program memory programmable via CAN bus or UART
- Strong Programming Security by separation of 2kByte Flash Boot Loader Memory and 32kByte of Customer Flash programmable Memory
- Application of Atmel or Customer Boot Loader
- Atmel delivers Application Programming Interfaces (API)

51

Atmel Wireless & Microcontrollers

CANary Microcontrollers: Advantages (2)

Secure Boot Flash Memory

- No involuntary destruction of Booth Flash Memory possible during embedded operations due to its unique parallel access by programmer
- No Idle situation for Micro Controller during ISP of Customer Memory due to separation of Customer and Booth Memory

Atmel Wireless & Microcontrollers

CANary Microcontrollers: Advantages (3)

Advanced CAN Controller

- 15 Message objects (Channels), each with filtering, masking and FIFO buffer
- All Channel features programmable on-the-fly

CANary Microcontrollers: Advantages (4)

Advanced C51 Core

- Fully static operation
- Asynchronous port reset
- Second data pointer
- Inhibit ALE
- X2 CORE

- 4 level priority interrupt system
- Enhanced UART
- Programmable Timer 2 clock out
- Power Consumption reduction
- Wake up with external interrupts from Power Down

CANary family

Agenda

Atmel Wireless & Microcontrollers

CANary Microcontrollers: T89C51CC01 Block Diagram

Atmel Wireless & Microcontrollers

CANary Microcontrollers: T89C51CC01 Features

- C52 Core compatible
- Up to 40 MHz operation (X2 mode)
- X2 Core
- Double Data Pointer
- 32 Kb FLASH ISP, 2 Kb FLASH Boot Loader
- 2Kb EEPROM
- 1.25 k RAM (256b scratchpad RAM + 1kb XRAM)
- 3-16 bit Timers (T0,T1,T2)
- Enhanced UART
- CAN Controller with 15 channels (2.0A and 2.0B)

Atmel Wireless & Microcontrollers

CANary Microcontrollers: T89C51CC01 Features (Cont 'd)

- 10 bits A/D with 8 Channels
- 5 I/O Ports
- Programmable Counter Array
 - 5 channels, 5 Modes:
 - PWM, Capture, Timer, Counter, Watchdog(Channel 4 only)
- 1Mbit /sec CAN at 8MHz Crystal Frequency (X2mode)
- Temperature: -40 to 85°C
- Voltage: 3 to 5 Volt +/-10%
- Packages: PLCC44, TQFP44, CA-BGA64

CANary Microcontrollers: T89C51CC01 Advantages

- T89C51CC01 is the first CAN Controller of a new generation for smart embedded applications which offers Flash and ISP Technology for Customer Code & Application Parameter update in a 44-pin package.
- For security reasons the 2kB Boot Memory is physically separated from 32kB Customer memory.
- Further for security reasons the Boot memory can be written only in Parallel Mode outside the application.
- 10b ADC & 5 channel PCA allow T89C51CC01 single-chip applications in most cases
- Included in the delivery is a wide range of Application Programming interfaces (API) concerning ISP, EEPROM, Security, Customer & Boot Flash

CANary Microcontrollers: T89C51CC01 Applications

- T89C51CC01 is destinated to embedded CAN bus applications which requests an easy up-date of customer code and application parameters, possible thanks to In-System-Programming (ISP) mode via CAN bus
- T89C51CC01 allows beside the communication with the CAN bus the capture of analog parameters (10b ADC) and the control of eg. a stepper motor (5 channel PCA)
- T89C51CC01 fits in industrial and automotive applications for body and comfort electronic.

CANary Microcontrollers: T89C51CC02 Block Diagram

Atmel Wireless & Microcontrollers

CANary Microcontrollers: T89C51CC02 Features

- C52 Core and T89C51CC01 compatible
- Up to 40 MHz operation (X2 mode)
- X2 Core
- Double Data Pointer
- 16 kb FLASH ISP
- 2 Kb FLASH Boot Loader
- 2 kb EEPROM
- 512b RAM (256b scratchpad RAM + 256b XRAM)
- 3-16 bit Timers (T0,T1,T2)
- Enhanced UART
- CAN Controller with 4 channels (2.0A and 2.0B)

Atmel Wireless & Microcontrollers

CANary Microcontrollers: T89C51CC02 Features (Cont 'd)

- 10 bit ADC with 8 Channels
- 3 I/O Ports
- Programmable Counter Array (PCA)
 - > 2 channels, 5 Modes
 - PWM, Capture, Timer, Counter
- 1MBit/sec CAN at 8MHz Crystal Frequency (X2 mode)
- Temperature: -40 to 85°C
- Voltage: 3 to 5 Volt +/10%
- Package: SOIC28, PIcc28, TQFP32, TSSOP28

CANary Microcontrollers: T89C51CC02 Advantages

- T89C51CC02 is designed for embedded low-end, high volume applications
- Same functions like included in T89C51CC01
- Reduced costs in a 24 pin package.
- Main difference to T89C51CC01:
 - > No access possible to external RAM/ROM via Ports 0 & 2
 - Customer Flash Memory 16kBytes
 - On-chip RAM: 512Bytes
 - 4 channel CAN Controller
 - 2 channel PCA
- All other functions will remain identical in the sense that the T89C51CC01 development tools can be used for T89C51CC02.

CANary Microcontrollers: T89C51CC02 Key messages

- T89C51CC02 presents a low-pin Count package for embedded high volume applications with the availability of all T89C51CC01 functions like:
 - In-System-programming of Code program & Application Parameters via CAN bus or UART
 - Physical separation of Boot Loader Memory (2kByte) and Customer Flash Memory (16kByte)
 - > 2 kB EEPROM
 - > 10b ADC
 - 2 channel PCA
- Remark: Low-pin count feature will not allow the access to external RAM/ROM via P0/P2.

CANary Microcontrollers: T89C51CC02 Applications

- Sampling of Parameters (via ADC) and Control Functions (Motors etc. via PWM) of embedded applications in:
 - Building control (eg Air Condition, Security, Light, Access...),
 - Production machines (eg. Knitting, packaging machines),
 - > Automotive applications (body / comfort electronic)

CANary Microcontrollers: Roadmap

Atmel Wireless & Microcontrollers

CANary Microcontrollers Tools

A complete tool chain for quick development

Conclusion

- CAN: The most used protocol in industrial & automotive applications
 - strong support by many HLPs & CAN tool vendors
- CANary unique feature in its range:
 - including an advanced powerful CAN Controller
 - In-System-Programming (ISP) of Program Flash via CAN bus
 - Separated Flash memories for Program & Boot functions
- CANary: designed for industrial and automotive applications

CANary the ultimate CAN Controller

